Quality indicators for technologies applied to the hospital pharmacy

Indicadores de calidad de tecnologías aplicadas a la farmacia hospitalaria

Eva Negro Vega¹, Ana María Álvarez Díaz², María Queralt Gorgas-Torner³, Carmen Encinas Barrios⁴, Amelia de la Rubia Nieto⁵, the TECNO⁶ Work Group of the SEFH

¹Pharmacy Unit, Hospital Universitario de Getafe, Madrid. ²Pharmacy Unit, Hospital Universitario Ramón y Cajal, Madrid. ³Pharmacy Unit, Corporació Sanitària Parc Taulí de Sabadell, Barcelona. ⁴Pharmacy Unit, Hospital General de Ciudad Real, Ciudad Real. ⁵Pharmacy Unit, Hospital Universitario Virgen de la Arrixaca, Murcia. ⁶TECNO Work Group of the SEFH (in alphabetical order): Teresa Bermejo Vicedo. Pharmacy Unit, Hospital Universitario Ramón y Cajal, Madrid. Carlos Codina i Jane. Pharmacy Unit, Hospital Clínic, Barcelona. Laura Domenech Moral. Hospital Vall d’Hebron, Barcelona. Ana Herranz Alonso. Pharmacy Unit, Hospital General Universitario Gregorio Marañón, Madrid. María Elena Lobato Matilla. Pharmacy Unit, Hospital General Universitario Gregorio Marañón, Madrid. Isabel Martín Herranz. Pharmacy Unit, Complejo Hospitalario Universitario A Coruña. Raquel Pérez León. Pharmacy Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria. Spain.

Abstract

The TECNO group of the Sociedad Española de Farmacia Hospitalaria (Spanish Society of Hospital Pharmacy) has addressed the definition of a catalogue of indicators for performance, quality and safety in the use of technologies applied to the logistic activity of Hospital Pharmacy Units. The project was developed with a methodology of qualitative techniques by consensus, with the members of the TECNO Group participating as experts. Once indicators had been defined, a validation phase was conducted, and standards were established based on the result of the sampling carried out in the hospitals of the group members. A total of 28 indicators were obtained, with their corresponding quality standards applied to the use of technologies in the processes for medication storage, dispensing and preparation. The definition of quality indicators and their standards for measuring technologies in the use of medication represents a step forward in the improvement of their safety.

Resumen

El grupo TECNO de la Sociedad Española de Farmacia Hospitalaria ha abordado la definición de un catálogo de indicadores de funcionamiento, calidad y seguridad del uso de tecnologías aplicadas a la actividad logística de los Servicios de Farmacia Hospitalaria. El proyecto se desarrolló con una metodología de técnicas cualitativas de consenso participando como expertos los miembros del grupo TECNO. Una vez definidos los indicadores, se realizó una fase de validación y se establecieron estándares en base al resultado del muestreo realizado en los hospitales de los miembros del grupo. Se han obtenido un total de 28 indicadores con sus correspondientes estándares de calidad aplicados a la utilización de tecnologías en los procesos de almacenamiento, dispensación y elaboración de medicamentos. La definición de los indicadores de calidad y los estándares de medida de las tecnologías en el uso de los medicamentos es un paso adelante para mejorar su seguridad.

KEYWORDS

Technologies; Automation; Improvement in quality; Medication safety; Indicators; Hospital Pharmacy.

PALABRAS CLAVE

Tecnologías; Automatización; Mejora de la calidad; Seguridad de los medicamentos; Indicadores; Farmacia Hospitalaria.
Introduction

The advances in terms of technologies applied to the healthcare setting have allowed to develop systems that lead to an improvement in the quality, safety and efficiency of processes, including those associated with the use of medications.

The intense logistical activity by Hospital Pharmacy Units has promoted the updating of technical resources and processes, by incorporating technology in activities which were traditionally manual. Thus, as shown by the results of a survey, the implementation of New Technologies in Spain is essentially targeted to drug management, prescription and dispensing systems.

The Spanish Society of Hospital Pharmacy, as well as other national and international organizations, has created specific work groups for this matter. Throughout its trajectory and true to its mission, the TECNO Group, created on October, 2004, has prepared support documents for the development of effective criteria and practices for the implementation of new technologies regarding the use of medications with efficacy and safety, as part of comprehensive patient care. Line 3 in their Strategy Plan 2013-2017, QUALITY, determines as an operational objective: “To define quality indicators for the use of new technologies”.

In 2010, an editorial published on the role of the Hospital Pharmacist regarding new technologies in the healthcare setting determined a definition of the Pharmacist role in terms of technology selection and evaluation, implementation, assessment of outcomes, teaching, training and research. These activities include determining indicators to ensure the quality and efficiency of processes and their monitoring and follow-up. The editorial also includes methods for quality assessment and orientation to outcomes and quality, among the knowledge and skills of the Pharmacist in charge.

Patient safety is a critical component of healthcare quality, as the final aim of this technological development that allows to optimize complex processes. The responsibility for adverse events is assigned to deficiencies in the system, its organization and functioning, rather than to the individuals involved. Therefore, it is necessary to be aware of the errors that can be entailed by the implementation of these technologies in Pharmacy Units (PhUs).

The variability of activities and persons involved, as well as the conditions in which these activities are conducted, represent an evident risk that must be known and analyzed. The incorporation of technology does not eliminate errors, it will often replace them by others that will become systematic; therefore, quality criteria must be included in the system, its organization and functioning, rather than to the individuals involved.

In the specific case of semi-automated dispensing systems (SDS), the TECNO Group, in collaboration with ISMP-Spain (Institute for Safe Medication Practices) prepared the document “Recommendations for the safe use of automated dispensing systems”. In this document, Essential Procedure 13 includes the assessment of SDS in the hospital programs for quality and risk management. As well as having procedures, it is recommended to evaluate and record any incidents that occur, in order to implement improvements, as well as to define quality indicators with continuous monitoring that will guarantee an adequate performance and use of SDS. Some of them are: contents of the SDS, stock, expiration dates, filling processes, preparation of orders or collection of medications.

Subsequently, TECNO and the ISMP-Spain analyzed the implementation of safe practices in the use of automated dispensing systems, based on this document. The results of this analysis show that the implementation of the practices recommended in the Essential Procedure 13 is of 48% for medium-sized hospitals (200 to 499 beds), 54% for hospitals with > 500 beds, and 60% in those with < 299 beds, with a mean 53% in the whole set of hospitals; this was one of the recommendations with lower percentage values of the 14 included in the document.

The objective of this study is to define a catalogue of quality indicators in order to assess the use of Technologies applied to Hospital Pharmacy.

Methods

On September, 2013, in the setting of the Strategy Plan 2013-2017, the TECNO Group defined as an objective: to prepare a set of indicators in order to evaluate the use of technologies implemented in Pharmacy Units.

A study based on qualitative consensus techniques was conducted, where the TECNO Group members participated as experts.

For the definition of indicators, there was an identification of those processes where technologies have been incorporated. All group members were requested to provide the quality indicators used in their centres. Besides, a bibliographic search was conducted in order to identify those indicators already described in literature, as the basis for the definition of the indicators that were the objective of the study. A fact sheet was completed for each indicator, in order to guarantee homogeneity in data collection and interpretation. This sheet included the name of the indicator, method of calculation, data source, collection frequency, and person responsible, among other data. (Table 1).

There was a validation stage for the catalogue of indicators defined, in order to evaluate the reliability and feasibility of the calculation of the indicators designed. Data were collected from hospitals with different characteristics, size, work procedures, and commercial solutions implemented.

Finally, the standard value for each indicator was established, based on the results obtained in a sequential sampling over 3 months.

Results

Medication safety and patient safety are one of the most widely implemented systems in hospitals, and the system has the highest impact precisely upon these activities. Therefore, it is necessary to be aware of the errors that can be entailed by the implementation of these technologies in Pharmacy Units (PhUs).

or vertical carousels, have represented a major advance in hospital logistics, leading to the maximum optimization of the resources used for medication management, but it is convenient to follow up the quality of processes involved in order to guarantee the minimum number of errors. Dispensing errors have been quantified in different studies and over the years as the most frequent, with rates from 2% to 31% in the dispensing by stock model. The incorporation of technologies in this activity has already demonstrated a reduction in levels from 1.7% to 8% after the incorporation of semi-automated systems to dispensing by stock. These studies have not only assessed the number of errors, but have also identified the stage of the dispensing process where they occur, and the factors involved. To detect these errors will improve the quality of the service offered by the PhU, and allow to establish preventive measures and work procedures that will lead to safer dispensing.

In the specific case of semi-automated dispensing systems (SDS), the TECNO Group, in collaboration with ISMP-Spain (Institute for Safe Medication Practices) prepared the document “Recommendations for the safe use of automated dispensing systems”. In this document, Essential Procedure 13 includes the assessment of SDS in the hospital programs for quality and risk management. As well as having procedures, it is recommended to evaluate and record any incidents that occur, in order to implement improvements, as well as to define quality indicators with continuous monitoring that will guarantee an adequate performance and use of SDS. Some of them are: contents of the SDS, stock, expiration dates, filling processes, preparation of orders or collection of medications. Subsequently, TECNO and the ISMP-Spain analyzed the implementation of safe practices in the use of automated dispensing systems, based on this document. The results of this analysis show that the level of implementation of the practices recommended in the Essential Procedure 13 is of 48% for medium-sized hospitals (200 to 499 beds), 54% for hospitals with > 500 beds, and 60% in those with < 299 beds, with a mean 53% in the whole set of hospitals; this was one of the recommendations with lower percentage values of the 14 included in the document.

The objective of this study is to define a catalogue of quality indicators in order to assess the use of Technologies applied to Hospital Pharmacy.

Methods

On September, 2013, in the setting of the Strategy Plan 2013-2017, the TECNO Group defined as an objective: to prepare a set of indicators in order to evaluate the use of technologies implemented in Pharmacy Units.

A study based on qualitative consensus techniques was conducted, where the TECNO Group members participated as experts.

For the definition of indicators, there was an identification of those processes where technologies have been incorporated. All group members were requested to provide the quality indicators used in their centres. Besides, a bibliographic search was conducted in order to identify those indicators already described in literature, as the basis for the definition of the indicators that were the objective of the study. A fact sheet was completed for each indicator, in order to guarantee homogeneity in data collection and interpretation. This sheet included the name of the indicator, method of calculation, data source, collection frequency, and person responsible, among other data. (Table 1).

There was a validation stage for the catalogue of indicators defined, in order to evaluate the reliability and feasibility of the calculation of the indicators designed. Data were collected from hospitals with different characteristics, size, work procedures, and commercial solutions implemented.

Finally, the standard value for each indicator was established, based on the results obtained in a sequential sampling over 3 months.

Results

The logistic processes in the Pharmacy Unit that have incorporated technologies are: storage, dispensing, and preparation of medications. The most widely implemented systems are:...
- Semi-automated systems for horizontal dispensing (SASHD)
- Semi-automated systems for vertical dispensing (SASVD)
- Automated dispensing systems (ADS)
- Automated dispensing systems for outpatients (ADSO)
- Medication re-packaging systems
- Traceability systems for drug preparation

Process and outcome indicators were defined for each one; the outcome was a list of 28 indicators with their related standards (Table 2).

The methodology for developing the catalogue was based on qualitative techniques by consensus, because there are no publications on badell.

The estimation of quality standards was conducted with data provided by 5 hospitals in the TECNO Group: Universitario Ramón y Cajal from Madrid, Universitario de Getafe from Madrid, Vigen de la Arrixaca from Murcia, General Universitario from Ciudad Real, and Parc Taulí from Sabadell.

Discussion

According to the WHO, the best way to adopt solutions in order to reduce risks is to think in terms of system; therefore, it is essential for organizations to get involved in the implementation of quality guarantee systems, and to define criteria, objectives and standards.

An indicator is not a direct measure of quality, but a tool that allows us to assess actions, and indicates which aspects require a deeper analysis. There are different definitions of indicator. According to the JCAHO (Joint Commission on Accreditation of Healthcare Organizations), it is: “A quantitative measure useful for monitoring and assessing the quality of important aspects in patient care, organization and management. It points at the aspects where there might be an opportunity for quality improvement”.

Rule UNE 66175, Quality Management Systems: Guidelines for the implementation of indicators systems, defines it as: “Data or set of data which will help to measure objectively the evolution of a process or an activity”.

Indicators are tools determined over time, which allow an improvement in the quality of processes. Having a catalogue of indicators will facilitate management and benchmarking, and ensure a homogeneous structure.

The methodology for developing the catalogue was based on qualitative techniques by consensus, because there are no publications on validated indicators for the use of these technologies. This participative method is widely used in the setting of public healthcare, given the need to unify criteria in areas where it is not possible to generate scientific evidence.

The following are considered qualitative techniques: open interviews, discussion groups, observation, and participative observation. Qualitative research collects the words by the subjects for their subsequent interpretation, without insisting on the statistical representation of quantitative techniques. The members of the group are required to make collective decisions, based on common agreements. In order to reach this type of agreements and decisions, there are different techniques for consensus that can help to a structured and systematic process.

In order to guarantee the validity of a consensus, the following will be essential:

- To determine the questions to be answered, and set up clear and specific objectives.
- To select the group of experts, in order to guarantee aspects such as a sufficient number of members, experience, prestige, interest for the subject, time availability, and lack of conflicts of interest.
- Scenarios must be methodically prepared, following a formal structured process.

These indicators have been confirmed in daily practice, verifying that Pharmacy Units have the information systems required to allow their monitoring. In the items “SASHD: errors in the preparation of orders” and “SASVD errors in the preparation of carts”, 2 indicators with similar characteristics have been defined, to allow each hospital to use the most feasible based on the technology available and their information system.

The objective of the TECNO Group has been for maximum values, trying to define a high number of indicators in order to include the highest number of activities and characteristics of the automated logistic processes, though avoiding to make one single definition, or even leaving some matters for each centre to decide, aware that the structure and work procedures are different in each Pharmacy Unit, and it is not always possible to apply common criteria.

In the case of automated systems for dispensing to outpatients, or traceability in preparation, their limited current implementation in Pharmacy Units makes it difficult to obtain indicators, and even more to define a quality standard; therefore, the catalogue leaves up to each Pharmacy Unit the definition of the types of error to be monitored, based on their own interests. It is considered necessary to continue along this line of work, as these technologies are implemented and others are incorporated, such as the use of robotic dispensing systems.

We must highlight a limitation: the standards were calculated with the data collected in 5 hospitals from the Group. A larger study would be required in order to verify them; and for this reason, the TECNO Group considers it will be necessary to develop a multicentre project with the Pharmacy Units that use technologies to calculate systematically and periodically these indicators, and share these results.

An increase in sample size would allow to validate or re-calculate standards based on results, and thus continue moving forward in quality improvement.

With this definition of indicators, the TECNO Group takes one more step to ensure the best use of the technologies available. If so far it had defined the technologies and requirements that should be met in terms of structure, software, interfaces and services, with the definition of this panel of indicators it meets the objective of establishing a continuous evaluation system which will allow to identify latent errors or system failures with risk for patient safety, avoiding their systematization.

The definition of quality indicators for technologies applied to Hospital Pharmacy and their standards is a process for continuous improvement that contributes to a safe use of medications.

<table>
<thead>
<tr>
<th>INDICATOR NO.</th>
<th>PROCEDURE / PROCESS:</th>
<th>RESPONSIBLE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUALITY CRITERIA:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exceptions to the criteria (if any):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sources of the quality criteria:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDICATOR (name):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculation</td>
<td>Numerator:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denominator:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data sources:</td>
<td></td>
</tr>
<tr>
<td>Data Collection</td>
<td>Sample size and type of study:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Responsible:</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Panel of Quality Indicators for technologies in Hospital Pharmacy.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>QUALITY INDICATOR</th>
<th>CALCULATION OF INDICATOR</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASHD</td>
<td>Reliability of the drug inventory in the SASHD³</td>
<td>No. of boxes without incidence / No. of boxes reviewed (%)</td>
<td>≥95%</td>
</tr>
<tr>
<td>Match between the physical and the clerical stock in the SASHD³</td>
<td>No. of units without incidence / No. of total units counted (%)</td>
<td>≥90%</td>
<td></td>
</tr>
<tr>
<td>Accuracy in the preparation of orders for clinical units³</td>
<td>No. of lines without incidence / No. of lines sent to the SASHD (%)</td>
<td>≥95%</td>
<td></td>
</tr>
<tr>
<td>Agreement in empty places</td>
<td>No. of real empty places / No. of empty places identified by the system (%)</td>
<td>≥95%</td>
<td></td>
</tr>
<tr>
<td>Control of expiration date</td>
<td>No. of non-expired units / No. of total units counted (%)</td>
<td>≥98%</td>
<td></td>
</tr>
<tr>
<td>Quality in preparation of orders⁴</td>
<td>No. of medication lines without errors in order preparation / No. of medication lines reviewed (%)</td>
<td>≥98%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of units without errors in order preparation / No. of total units reviewed (%)</td>
<td>≥95%</td>
<td></td>
</tr>
<tr>
<td>SASVD</td>
<td>Reliability of the drug inventory in the SASVD³</td>
<td>No. of boxes without incidence / No. of boxes reviewed (%)</td>
<td>>80%</td>
</tr>
<tr>
<td>Match between the physical and the clerical stock in the SASVD</td>
<td>No. of units without incidence / No. of total units counted (%)</td>
<td>≥75%</td>
<td></td>
</tr>
<tr>
<td>Accuracy in the preparation of Unidosis Carts⁶</td>
<td>No. of lines without incidences / No. of lines sent to the SASVD (%)</td>
<td>≥95%</td>
<td></td>
</tr>
<tr>
<td>Agreement in empty places</td>
<td>No. of real empty places / No. of empty places identified by the system (%)</td>
<td>≥98%</td>
<td></td>
</tr>
<tr>
<td>Control of expiration date</td>
<td>No. of non-expired units / No. of total units counted (%)</td>
<td>≥98%</td>
<td></td>
</tr>
<tr>
<td>Quality in preparation of carts⁷</td>
<td>No. of medication lines without errors in cart preparation / No. of medication lines reviewed (%)</td>
<td>≥98%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of medication units without loading errors / Total number of medication units reviewed (%)</td>
<td>≥95%</td>
<td></td>
</tr>
<tr>
<td>ADS</td>
<td>Reliability of the ADS inventories in the re-stocking process⁶</td>
<td>No. of medication lines without stock incidences in the re-stocking process / No. of medication lines re-stocked (%)</td>
<td>≥80%</td>
</tr>
<tr>
<td>Reliability of the ADS inventories⁸</td>
<td>No. of medications without stock incidences in the re-stocking process / No. of medications included in the ADS (%)</td>
<td>≥90%</td>
<td></td>
</tr>
<tr>
<td>Stockout for ADS</td>
<td>[Total No. of stockouts / Days analyzed in the period] / No. of stations (%)</td>
<td>≤2%</td>
<td></td>
</tr>
<tr>
<td>Collections without override by ADS</td>
<td>Total No. of collections without override / Total No. of collections* No. of ADS [%]</td>
<td>≥70%</td>
<td></td>
</tr>
<tr>
<td>Medications prescribed not included in the ADS¹⁰</td>
<td>No. of medications prescribed not included in the ADS / Total No. of medications in the ADS (%)</td>
<td>≤10%</td>
<td></td>
</tr>
<tr>
<td>Collection / Re-stocking Ratio¹¹</td>
<td>No. of medication units collected / No. of medication units re-stocked in each ADS</td>
<td>Historic control</td>
<td></td>
</tr>
<tr>
<td>Control of expiration date</td>
<td>No. of non-expired units / No. of total units reviewed (%)</td>
<td>≥98%</td>
<td></td>
</tr>
<tr>
<td>Errors in ADS re-stocking¹²</td>
<td>No. of lines adequately re-stocked / Total No. of lines re-stocked (%)</td>
<td>Historic control</td>
<td></td>
</tr>
<tr>
<td>ISMP Index of Safety in ADS</td>
<td>Results of the self-assessment questionnaire for ADS safety</td>
<td>Historic control</td>
<td></td>
</tr>
<tr>
<td>ADSO</td>
<td>Accuracy in dispensing to outpatients¹³</td>
<td>No. of lines without incidence in dispensing / No. of medication lines dispensed (%)</td>
<td>≥99%</td>
</tr>
<tr>
<td>Accuracy in the automatic load of medications</td>
<td>No. of non-rejected packages / Total No. of packages to be loaded (%)</td>
<td>≥95%</td>
<td></td>
</tr>
<tr>
<td>Agreement between the ADSO stock and the management system</td>
<td>No. of existing units in ADSO / No. of units in the ADSO Management System (%)</td>
<td>≥95%</td>
<td></td>
</tr>
<tr>
<td>System stops in dispensing</td>
<td>No. of incidences blocking ADSO in dispensing / Total No. of dispensing lines (%)</td>
<td>≤5%</td>
<td></td>
</tr>
<tr>
<td>Quality in dispensing of medications to outpatients¹⁴</td>
<td>No. of dispensing actions without errors / No. of dispensing actions conducted with the technology (%)</td>
<td>≥99.5%</td>
<td></td>
</tr>
<tr>
<td>RE-PACKAGING SYSTEMS</td>
<td>Losses in re-packaging</td>
<td>No. of units lost / Total No. of units to be re-packaged (%)</td>
<td>≤1%</td>
</tr>
<tr>
<td>Quality in re-packaging</td>
<td>No. of units adequately re-packaged / No. of re-packaged units (%)</td>
<td>≥99%</td>
<td></td>
</tr>
<tr>
<td>TRACEABILITY SYSTEMS FOR DRUG PREPARATION</td>
<td>Discrepancies of medications in laminar flow cabinet</td>
<td>No. of preparations intercepted by the system / Total No. of preparations (%)</td>
<td>Historic control</td>
</tr>
<tr>
<td>Deviations in gravimetric control</td>
<td>No. of preparations detected with incorrect weight by the gravimetric control / Total No. of preparations (%)</td>
<td>Historic control</td>
<td></td>
</tr>
<tr>
<td>Accuracy in administration¹⁵</td>
<td>No. of errors in administration to patients prevented by the traceability system / Total No. of administrations (%)</td>
<td>Historic control</td>
<td></td>
</tr>
</tbody>
</table>

SASHD: Semi-automated systems for horizontal dispensing
SASVD: Semi-automated systems for vertical dispensing
ADS: Automated dispensing systems for horizontal dispensing
ADSO: Automated dispensing systems for outpatients
Table 2 (cont.), Notes on the Panel of Indicators.

Semi-automated system for horizontal dispensing (SASHD):

<table>
<thead>
<tr>
<th>#</th>
<th>Notes on the Panel of Indicators.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reliability of the inventory Any discrepancy found, qualitative as well as quantitatively, in the SASHD boxes. A systematic review of the SASHD must be established for its calculation.</td>
</tr>
<tr>
<td>2</td>
<td>Match between the physical and the clerical stock in the SASHD Any quantitative discrepancy in the units counted in a systematic review of the SASHD. The standard value has been defined taking into account that +/- 5% discrepancies in the units counted in relation to the clerical stock of the SASHD are not considered an error.</td>
</tr>
<tr>
<td>3</td>
<td>Accuracy in the preparation of orders for clinical units “Incidences” are defined as lines automatically generated by the system in the “Report of Incidences”, when completing the preparation of orders (any type of orders: deals, urgent orders, re-stocking for SASVD and ASD, etc.). E.g. order “10”, dispensed “8”.</td>
</tr>
<tr>
<td>4</td>
<td>Errors in preparation of orders Any discrepancy found, qualitative as well as quantitatively, between what has been requested and what has been dispensed in each order prepared. Stockout of a medication will be considered an error. One or the other indicator will be calculated based on the needs and the potential for calculation in each hospital.</td>
</tr>
</tbody>
</table>

Semi-automated system for vertical dispensing (SASVD):

<table>
<thead>
<tr>
<th>#</th>
<th>Notes on the Panel of Indicators.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Reliability of the inventory Any discrepancy found, qualitative as well as quantitatively, in the SASVD boxes. A systematic review of SASVD must be established for its calculation.</td>
</tr>
<tr>
<td>6</td>
<td>Accuracy in the preparation of Unidosis Carts “Incidence” is defined as any discrepancy found, qualitative as well as quantitatively, in the dispensing lines. Stockout of a medication will be considered an error.</td>
</tr>
<tr>
<td>7</td>
<td>Errors in load preparation for the Unidosis Carts Any discrepancies found, qualitative as well as quantitatively, between what has been ordered and what has been dispensed in each box of the Unidosis Cart. Stockout of a medication will be considered an error. One or the other indicator will be calculated based on the needs and the potential for calculation in each hospital.</td>
</tr>
</tbody>
</table>

Automated Dispensing System (ADS):

<table>
<thead>
<tr>
<th>#</th>
<th>Notes on the Panel of Indicators.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Reliability of the ADS inventories in the re-stocking process Any discrepancies found, qualitative as well as quantitatively, in ADS locations during the re-stocking process. This indicator does not include the expiration date control.</td>
</tr>
<tr>
<td>9</td>
<td>Reliability of the ADS inventories Any discrepancies found, qualitative as well as quantitatively, in ADS locations during the re-stocking process. A systematic review of the ADS must be established for its calculation.</td>
</tr>
<tr>
<td>10</td>
<td>Override Exceptional withdrawal of medications from the ADS previous to pharmaceutical validation</td>
</tr>
<tr>
<td>11</td>
<td>Collection/Re-stocking Ratio Each centre will define the optimal efficiency in re-stocking according to the maximum/minimum stocks defined for the medications included in the ADS and the re-stocking frequency determined for them. E.g.: For a 4:1 ratio (max:min) and minimum stock determined to cover the needs during 2-3 days, the optimal re-stocking frequency would be approximately every 6 days.</td>
</tr>
<tr>
<td>12</td>
<td>Collection/Re-stocking Ratio Each centre will define the types of error they are interested to analyze and the methodology to be followed. It is considered essential to measure at least qualitative errors (wrong medication, medications mixed in the same location), which must be measured in the re-stocking process in real time.</td>
</tr>
<tr>
<td>13</td>
<td>Errors in ADS re-stocking Each centre will define the types of error they are interested to analyze and the methodology to be followed. It is considered essential to measure at least qualitative errors (wrong medication, medications mixed in the same location), which must be measured in the re-stocking process in real time.</td>
</tr>
</tbody>
</table>

Automated dispensing system for outpatients (ADSO):

<table>
<thead>
<tr>
<th>#</th>
<th>Notes on the Panel of Indicators.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Accuracy in dispensing to outpatients “Incidence” is defined as any discrepancy found, qualitative as well as quantitatively, in the dispensing lines. Stockout of a medication will be considered an error.</td>
</tr>
<tr>
<td>15</td>
<td>Quality in dispensing medications to outpatients The type of error to be considered is not specified in the indicator (wrong medication, dose, quantity…). Each centre will define the types of error they are interested to analyze and the methodology to be followed.</td>
</tr>
</tbody>
</table>

Re-packaging System

<table>
<thead>
<tr>
<th>#</th>
<th>Notes on the Panel of Indicators.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Losses in re-packaging Medications that, after the re-packaging process, have lost their integrity or organoleptic characteristics (breakage, change in colour, pulverization…).</td>
</tr>
<tr>
<td>17</td>
<td>Medication discrepancies in the laminar flow cabinet Those intercepted by error in medication, dose, concentration, etc., will be considered discrepancies.</td>
</tr>
<tr>
<td>18</td>
<td>Accuracy in administration At the time of administration to the patient, the system detects an error that can be “wrong patient” or “wrong order of administration”.</td>
</tr>
</tbody>
</table>
Eva Negro Vega et al.

Introducción

El avance de las tecnologías aplicadas al ámbito sanitario ha permitido desarrollar sistemas que permiten mejorar la calidad, seguridad y eficiencia de los procesos, incluidos los relacionados con el uso de medicamentos1. La intensa actividad logística de los Servicios de Farmacia Hospitalaria, ha mostrado la necesidad de la modernización de las tecnologías aplicadas al proceso de dispensación de medicamentos, incluidos los relacionados con el uso de medicamentos, como almacenamiento y dispensación de medicamentos, entre otros, como los más frecuentes con tasas entre el 2 y el 31%.

Los errores de dispensación han sido cuantificados en distintos estudios y a lo largo de los años como los más frecuentes con tasas entre el 2 y el 31%. La seguridad del paciente, como fin último de este desarrollo tecnológico que permite optimizar procesos complejos, es un componente crítico de la calidad asistencial. La responsabilidad de los eventos adversos se atribuye a deficiencias del sistema, de la organización y de su funcionamiento más que a los individuos que participan en el mismo. Por lo tanto es necesario conocer y analizar la implantación de las tecnologías en los Servicios de Farmacia (SF)2,3. La variabilidad de actividades y personas implicadas, así como las condiciones en que se realizan dichas actividades suponen un riesgo evidente que hay que conocer y analizar. La incorporación de tecnologías no elimina los errores, muchas veces los sustituye por otros que se sistematizan, por lo que es necesario conocer los errores que pueden confluir en la implantación de las tecnologías en los Servicios de Farmacia (SF)3.-7. El ámbito del almacenamiento y la dispensación representan el mayor porcentaje de la producción de un SF medida en Unidades Relativas de Valor (URV) y es precisamente en estas actividades donde la tecnología está te-

Bibliografía

9. Fontan JE, Maneglier V, Nguyen VX, Loïat C, Brion F. Medication errors in hospi-

16. Mira Solves JJ, Massó Guirao P. Las técnicas cualitativas en la planificación sanita-
incorporación de sistemas semiautomatizados a la dispensación por stock. Estos estudios no sólo valoran el número de errores sino que identifican la etapa del proceso de dispensación donde ocurren y los factores contribuyentes. Detectar estos errores mejora la calidad del servicio ofrecido por el SF y permite establecer medidas preventivas y procedimientos de trabajo que permitan una dispensación más segura.

En el caso concreto de los sistemas automatizados de dispensación (SAD) el grupo TECNO en colaboración con el ISMP-España, elaboró el documento “Recomendaciones para el uso seguro de los sistemas automatizados de dispensación”. En este documento, el procedimiento esencial 13 incluye la evaluación de los SAD en los programas de calidad y gestión de riesgos de los hospitales. Además de disponer de procedimientos, se recomienda evaluar y registrar los incidentes que ocurran para implantar mejoras, así como definir indicadores de calidad cuya monitorización continua garantice un funcionamiento y uso correcto de los SAD. Entre ellos: contenido del SAD, inventario, caducidades, procesos de llenado, preparación pedido o retirada de medicamentos. Posteriormente TECNO y el ISMP-España analizaron la implantación de las prácticas seguras en la utilización de los sistemas automatizados de dispensación en base a este documento. El resultado de este análisis muestra que el grado de implantación de las prácticas recomendadas en el procedimiento esencial 13 es del 48% para los hospitales de tamaño intermedio (200-499 camas), del 54% en los hospitales con más de 500 camas y del 60% en los de menos de 200 camas con una media del 53% en el conjunto de hospitales, siendo una de las recomendaciones con valores porcentuales más bajos de las 14 que constituyen el documento.

El objetivo de este trabajo es definir un catálogo de indicadores de calidad para evaluar el uso de las Tecnologías aplicadas a la Farmacia Hospitalaria.

Métodos

– En septiembre de 2013 el grupo TECNO definió como objetivo en el marco del plan estratégico 2013-2017 elaborar un conjunto de indicadores para evaluar la calidad del uso de las tecnologías implantadas en los SF.
– Se llevó a cabo un estudio basado en técnicas cualitativas de consenso en el que participaron como expertos los miembros del grupo TECNO.
– Para la definición de indicadores se identificaron los procesos en los que se han incorporado tecnologías. Se solicitó a todos los miembros del grupo que aportaran los indicadores de calidad utilizados en sus centros. Además se realizó una búsqueda bibliográfica para identificar indicadores ya descritos en la literatura como base para la definición de los indicadores objetivo del trabajo. Se completó una ficha técnica para cada indicador para garantizar la homogeneidad en la recogida e interpretación de los datos. En esta ficha se incluyó nombre del indicador, método de cálculo, fuente de datos, frecuencia de recogida y responsables entre otros (Tabla 1).
– Se realizó una fase de validación del catálogo de indicadores definido para valorar la fiabilidad y factibilidad del cálculo de los indicadores diseñados. Se recogieron datos de hospitales con distintas características, tamaño, procedimientos de trabajo y soluciones comerciales implantadas.
– Finalmente se estableció el valor estándar para cada indicador en base a los resultados obtenidos en un muestreo secuencial a lo largo de 3 meses.

<table>
<thead>
<tr>
<th>Tabla 1. Ficha del indicador.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERIO DE CALIDAD:</td>
</tr>
<tr>
<td>Excepciones al criterio (si procede):</td>
</tr>
<tr>
<td>INDICADOR (nombre):</td>
</tr>
<tr>
<td>Cálculo</td>
</tr>
<tr>
<td>Recogida de Datos</td>
</tr>
<tr>
<td>PROCEDIMIENTO / PROCESO:</td>
</tr>
<tr>
<td>Estándar:</td>
</tr>
<tr>
<td>Númerador:</td>
</tr>
<tr>
<td>Denominador:</td>
</tr>
<tr>
<td>Fuentes de datos:</td>
</tr>
<tr>
<td>Tamaño de la muestra y tipo de estudio:</td>
</tr>
<tr>
<td>Frecuencia:</td>
</tr>
<tr>
<td>Responsable:</td>
</tr>
</tbody>
</table>

Resultados

Los procesos logísticos del SF que han incorporado tecnologías son: almacenamiento, dispensación y elaboración de medicamentos. Los sistemas mayoritariamente implementados son:

– Sistemas semiautomatizados de dispensación horizontal (SSADH)
– Sistemas semiautomatizados de dispensación vertical (SSADV)
– Sistemas automatizados de dispensación (SAD)
– Sistemas automatizados de dispensación para pacientes externos (SAD-PEX)
– Sistemas de reenvasado de medicamentos
– Sistemas de trazabilidad en la elaboración de medicamentos

Para cada uno se definieron indicadores de proceso y de resultado obteniendo una relación de 28 indicadores con sus correspondientes estándares (Tabla 2).

El cálculo de los estándares de calidad se realizó con los datos aportados por 9 hospitales del Grupo TECNO: Universitario Ramón y Cajal de Madrid, Universitario de Getafe de Madrid, Virgen de la Arrixaca de Murcia, General Universitario de Ciudad Real y Parc Taulí de Sabadell.

Discusión

Para la OMS, la mejor manera de adoptar soluciones para reducir los riesgos es pensar en términos de sistema, por lo que es fundamental que las organizaciones se impliquen en instaurar sistemas de garantía de calidad y definir criterios, objetivos y estándares. Un indicador no es una medida directa de la calidad, sino una herramienta que nos permite valorar las actuaciones e indica qué aspectos requieren un análisis más profundo. Existen distintas definiciones de indicador. Según la JCAHO (Joint Commission on Accreditation of Healthcare Organizations): “Medida cuantitativa que sirve para monitorizar y evaluar la calidad de aspectos importantes de la atención, organización, gestión. Señala dónde se puede estar produciendo una oportunidad de mejora de la calidad”.

La Norma UNE 66175, Sistemas de Gestión de la Calidad. Guía para la implantación de sistemas de indicadores, define como: “Datos o conjunto de datos que ayudan a medir objetivamente la evolución de un proceso o de una actividad”.

Los indicadores son un instrumento cuya determinación a lo largo del tiempo permite la mejora de la calidad de los procesos. Disponer de un catálogo de indicadores facilita la gestión, el benchmarking y el aseguramiento de una calidad homogénea. La metodología para el desarrollo del catálogo se basó en técnicas cualitativas de consenso ya que no existen publicados indicadores validados de utilización de estas tecnologías. Este método de carácter participativo es ampliamente utilizado en el campo de la salud pública dada la necesidad de unificar criterios en áreas donde no es posible generar evidencia científica.

Se consideran técnicas cualitativas: entrevistas abiertas, grupos de discusión, observación y observación participante. La investigación cualitativa recoge los discursos de los sujetos, para proceder luego a su interpretación sin insistir en la representación estadística de técnicas cuantitativas. Se requiere que los miembros del grupo elaborador tomen decisiones colectivas, basadas en acuerdos comunes. Para alcanzar este tipo de acuerdos y
<table>
<thead>
<tr>
<th>ENTRADA</th>
<th>INDICADOR DE CALIDAD</th>
<th>CÁLCULO INDICADOR</th>
<th>ESTÁNDAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSADH</td>
<td>Fiabilidad del inventario de medicamentos en el SSADH</td>
<td>N° cajetines sin incidencia/N° cajetines revisados (%)</td>
<td>≥95%</td>
</tr>
<tr>
<td></td>
<td>Concordancia entre stock físico y administrativo del SSADH</td>
<td>N° unidades sin incidencia/N° unidades totalmente contadas (%)</td>
<td>≥90%</td>
</tr>
<tr>
<td></td>
<td>Precisión de la preparación de pedidos a unidades clínicas</td>
<td>N° líneas sin incidencias/N° líneas enviadas al SSADH (%)</td>
<td>≥95%</td>
</tr>
<tr>
<td></td>
<td>Concordancia en ubicaciones vacías</td>
<td>N° huecos vacíos reales/N° huecos vacíos que identifica el sistema (%)</td>
<td>≥95%</td>
</tr>
<tr>
<td></td>
<td>Control de caducidad</td>
<td>N° unidades no caducadas/N° total de unidades revisadas (%)</td>
<td>≥98%</td>
</tr>
<tr>
<td></td>
<td>Calidad en la preparación de los pedidos</td>
<td>N° líneas de medicamento sin errores en la preparación de los pedidos/N° líneas de medicamento revisadas (%)</td>
<td>≥98%</td>
</tr>
<tr>
<td></td>
<td>SSADV</td>
<td>N° cajetines sin incidencia/N° cajetines revisados (%)</td>
<td>>80%</td>
</tr>
<tr>
<td></td>
<td>Concordancia entre stock físico y administrativo del SSADV</td>
<td>N° unidades sin incidencias/N° unidades totalmente contadas (%)</td>
<td>≥75%</td>
</tr>
<tr>
<td></td>
<td>Precisión del llenado de carros de Dosis Unitarios</td>
<td>N° líneas sin incidencias/N° líneas enviadas al SSADV (%)</td>
<td>≥95%</td>
</tr>
<tr>
<td></td>
<td>Concordancia en ubicaciones vacías</td>
<td>N° huecos vacíos reales/N° huecos vacíos que identifica el sistema (%)</td>
<td>≥98%</td>
</tr>
<tr>
<td></td>
<td>Control de caducidad</td>
<td>N° unidades no caducadas/N° total de unidades revisadas (%)</td>
<td>≥98%</td>
</tr>
<tr>
<td></td>
<td>Calidad de la preparación del llenado de carros</td>
<td>N° líneas de medicamento sin errores de llenado/N° líneas de medicamento revisadas (%)</td>
<td>≥98%</td>
</tr>
<tr>
<td></td>
<td>SAD</td>
<td>N° líneas de medicamento sin incidencias en el stock en el proceso de reposición/N° líneas de medicamento respuestas (%)</td>
<td>≥80%</td>
</tr>
<tr>
<td></td>
<td>Fiabilidad en los inventarios de SAD en el proceso de reposición</td>
<td>N° líneas de medicamento sin incidencias en el stock en la revisión sistemática/N° medicamentos incluidos en el SAD (%)</td>
<td>≥90%</td>
</tr>
<tr>
<td></td>
<td>Stock out por SAD</td>
<td>N° total stockout/Días del periodo analizado/N° estaciones (%)</td>
<td>≤2%</td>
</tr>
<tr>
<td></td>
<td>Retiradas sin overrides por SAD</td>
<td>N° total de retiradas sin override/N° total retiradas* N° SAD (%)</td>
<td>≥70%</td>
</tr>
<tr>
<td></td>
<td>Medicamentos prescritos no incluidos en SAD</td>
<td>N° medicamentos prescritos no incluidos en SAD/N° total medicamentos SAD (%)</td>
<td>≤10%</td>
</tr>
<tr>
<td></td>
<td>Ratio Retirada/Reposición</td>
<td>N° de unidades de medicamentos retiradas/N° de unidades de medicamentos respuestas en cada SAD</td>
<td>Control histórico</td>
</tr>
<tr>
<td></td>
<td>Control de caducidad</td>
<td>N° unidades no caducadas/N° total de unidades revisadas (%)</td>
<td>≥98%</td>
</tr>
<tr>
<td></td>
<td>Errores en la reposición de los SAD</td>
<td>N° líneas repuestas correctamente/N° total de líneas repuestas (%)</td>
<td>Control histórico</td>
</tr>
<tr>
<td></td>
<td>Índice ISMP de seguridad en SAD</td>
<td>Resultado del cuestionario de autoevaluación de la seguridad de los SAD</td>
<td>Control histórico</td>
</tr>
<tr>
<td></td>
<td>SADPEX</td>
<td>N° de líneas sin incidencia en la dispensación/N° de líneas dispensadas de medicación (%)</td>
<td>≥99%</td>
</tr>
<tr>
<td></td>
<td>Precisión en la dispensación a PEX</td>
<td>N° de envases no rechazados/N° total de envases a cargar (%)</td>
<td>≥95%</td>
</tr>
<tr>
<td></td>
<td>Precisión en la carga automática de medicamentos</td>
<td>N° unidades existentes en SADPEX/N° unidades en el Sistema Gestión del SADPEX (%)</td>
<td>≥95%</td>
</tr>
<tr>
<td></td>
<td>Paradas del sistema en la dispensación</td>
<td>N° incidenzas que bloquean el SADPEX en la dispensación/N° total de líneas de dispensación (%)</td>
<td>≤5%</td>
</tr>
<tr>
<td></td>
<td>Calidad en la dispensación de medicamentos a pacientes externos</td>
<td>N° de dispensaciones sin error/N° total de dispensaciones realizadas con la tecnología (%)</td>
<td>≥99.5%</td>
</tr>
<tr>
<td></td>
<td>SISTEMAS DE REENVASADO</td>
<td>N° unidades perdidas/N° total de unidades a reenvasar (%)</td>
<td>≤1%</td>
</tr>
<tr>
<td></td>
<td>Calidad en el reenvasado</td>
<td>N° de unidades correctamente reenvasadas/N° unidades reenvasadas (%)</td>
<td>≥99%</td>
</tr>
<tr>
<td></td>
<td>SISTEMAS DE TRAZABILIDAD EN LA ELABORACIÓN</td>
<td>N° preparaciones interceptadas por el sistema/N° total de preparaciones (%)</td>
<td>Control histórico</td>
</tr>
<tr>
<td></td>
<td>Discrepancias de medicamentos en cabina</td>
<td>N° preparaciones detectadas por omisión/N° preparaciones (%)</td>
<td>Control histórico</td>
</tr>
<tr>
<td></td>
<td>Desviaciones en el control de peso</td>
<td>N° preparaciones detectadas por peso incorrecto/N° total de preparaciones (%)</td>
<td>Control histórico</td>
</tr>
<tr>
<td></td>
<td>Precisión en la administración</td>
<td>N° errores administración evitados por el sistema/N° administraciones totales (%)</td>
<td>Control histórico</td>
</tr>
</tbody>
</table>
Tabla 2 (cont.). Notas del panel de indicadores.

<table>
<thead>
<tr>
<th>N°</th>
<th>Indicador</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Fiabilidad del inventario</td>
<td>Cualquier discrepancia cuantitativa en las unidades contadas en una revisión sistemática del SSADH. Para su cálculo se deberá establecer una revisión sistemática del SSADH.</td>
</tr>
<tr>
<td>3.</td>
<td>Concordanza entre stock físico y administrativo del SSADH</td>
<td>Cualquier discrepancia cuantitativa en las unidades contadas en una revisión sistemática del SSADH. El valor estándar está definido teniendo en cuenta que no se considera error un +/- 5% de discrepancias en las unidades contadas respecto al stock administrativo del SSADH.</td>
</tr>
<tr>
<td>4.</td>
<td>Precisión de la preparación de pedidos a unidades clínicas</td>
<td>Se definen como “Incidencias” las líneas que genera automáticamente el sistema en el “Informe de Incidencias”, al finalizar la preparación de los pedidos (cualquier tipo de pedido: pactos, pedidos urgentes, reposición de SSADV y SAD, etc). Ej: pedido “10”, servido “8”.</td>
</tr>
<tr>
<td>5.</td>
<td>Errores en preparación de los pedidos</td>
<td>Cualquier discrepancia encontrada tanto cualitativa como cuantitativamente entre lo solicitado y lo servido en cada pedido preparado. La rotura de stock de un medicamento se considera error. Se calculará uno u otro indicador en función de las necesidades y de las posibilidades para el cálculo de cada hospital.</td>
</tr>
</tbody>
</table>

Sistema Semiáutomatizado de Dispensación Horizontal (SSADH):

1.	Fiabilidad del inventario	Cualquier discrepancia encontrada tanto cualitativa como cuantitativamente en los cajetines del SSADH. Para su cálculo se deberá establecer una revisión sistemática del SSADH.
2.	Precisión del llenado de carros de DU	Se definen como “Incidencias” las líneas que genera automáticamente el sistema en el “Informe de Incidencias”, en la preparación del llenado de cada carro de Unidosis. Ej: pedido “3”, servido “1”. La rotura de stock de un medicamento se considera error.
3.	Errores en preparación del llenado de carros de DU	Cualquier discrepancia encontrada tanto cualitativa como cuantitativamente entre lo solicitado y lo servido en cada cajetín del carro de Unidosis. La rotura de stock de un medicamento se considera error. Se calculará uno u otro indicador en función de las necesidades y de las posibilidades para el cálculo de cada hospital.

Sistema Semiáutomatizado de Dispensación Vertical (SSADV):

| 1. | Fiabilidad del inventario | Cualquier discrepancia encontrada tanto cualitativa como cuantitativamente en las ubicaciones del SAD durante el proceso de reposición. En este indicador no se incluye el control de caducidad. |
| 2. | Precisión del llenado de carros de DU | Cualquier discrepancia encontrada tanto cualitativa como cuantitativamente en las ubicaciones del SAD durante el proceso de reposición. Para su cálculo se deberá establecer una revisión sistemática del SAD. |

Sistema Automatizado de Dispensación (SAD):

1.	Fiabilidad en los inventarios de SAD en el proceso de reposición	Cualquier discrepancia encontrada tanto cualitativa como cuantitativamente en las ubicaciones del SAD durante el proceso de reposición.
2.	Fiabilidad en los inventarios del SAD	Cualquier discrepancia encontrada tanto cualitativa como cuantitativamente en las ubicaciones del SAD durante el proceso de reposición. Para su cálculo se deberá establecer una revisión sistemática del SAD.
3.	Override	En el cálculo se deben excluir aquellos medicamentos que el Hospital ha definido como externos a los SAD (ej: sueroterapia). Se incluirá los medicamentos que están prescritos pero no incluidos en cada SAD y que se dispensan por un circuito alternativo a la reposición del SAD.
4.	Mías prescritos no incluidos en SAD	Cada centro definirá la eficiencia óptima de reposición en función de los stocks max/min definidos para los medicamentos incluidos en los SAD y la frecuencia de reposición establecida de los mismos. Ej: para un ratio 4:1 (max:min) y stock mínimo establecido para cubrir las necesidades de 2-3 días, la frecuencia óptima de reposición sería aproximadamente cada 6 días.
5.	Ratio Retirada/Reposición	Cada centro definirá los tipos de error que le interesa analizar y la metodología a seguir. Se considera imprescindible medir al menos los errores cualitativos (medicamento equivocado, medicamentos mezclados en la misma ubicación) los cuales deberán medirse en el proceso de la reposición en tiempo real.

| 1. | Precisión dispensación PEX | Se define como “Incidencia” cualquier discrepancia encontrada tanto cualitativa como cuantitativamente en las líneas de dispensación. La rotura de stock de un medicamento se considera error. |
| 2. | Calidad en la dispensación de medicamentos a pacientes externos | El indicador no concreta el tipo de error a considerar (medicamento equivocado, dosis, cantidad...). Cada centro definirá los tipos de error que le interesa analizar y la metodología a seguir. |

Sistema Automatizado de Dispensación a Pacientes Externos (SADPEX):

| 1. | Pérdidas en el reenvasado | Medicamentos que tras el proceso de reenvasado han perdido su integridad o características organolépticas (roturas, cambio color, pulverización...). |

1.	Trazabilidad en la elaboración	Meditaciones que se consideran las interceptadas por error en medicamento, dosis, concentración, etc.
2.	Discrepancias de medicamentos en cabina de flujo laminar	En el momento de la administración al paciente el sistema detecta un error que puede ser “paciente equivocado” u “orden de administración errónea”.
3.	Precisión en la administración	Los escenarios deben ser elaborados metodológicamente, siguiendo un proceso formal estructurado. Estos indicadores han sido contrastados en la práctica diaria verificando que los SF disponen de los sistemas de información necesarios para permitir su monitorización. En los ítems, “SSADH: errores en la preparación de los pedidos” y “SSADV: errores en la preparación del llenado del carro” se definen 2 indicadores de características similares para permitir que cada...
hospital utiliza el más viable en función de la tecnología disponible y su sistema de información. El objetivo del grupo TECNO ha sido de máximos, intentar definir un gran número de indicadores para abarcar el mayor número de actividades y características de los procesos logísticos automatizados aunque evitando hacer una única definición o incluso dejando a criterio de cada centro algunos temas, conscientes de que la organización de cada SF y sus procedimientos de trabajo son distintos y no siempre es factible aplicar criterios comunes.

En el caso de los sistemas automatizados de dispensación para Pacientes Externos o los de trazabilidad en la elaboración, su escasa implantación en el momento actual en los SF dificulta obtener indicadores y más aún definir un estándar de calidad por lo que el catálogo deja abierta la definición de los tipos de error a monitorizar a cada servicio en función de sus intereses. Se considera necesario seguir en esta línea de trabajo a medida que se vayan implementando estas tecnologías y se incorporen otras como el uso de sistemas robotizados de dispensación.

Bibliografía

