REVIEW
Bilingual edition English/Spanish

Proactive therapeutic drug monitoring and pharmacogenetic analysis in inflammatory bowel disease: A systematic review

Monitorización farmacocinética proactiva y análisis farmacogenético en la enfermedad inflamatoria intestinal: Revisión sistemática

Octavio Ballesta-López1,2, María Centelles-Oria1, María Remedios Marqués-Miñana1, Juan Eduardo Megías-Vericat1, José Luis Poveda-Andrés1

1Department of Pharmacy, Medicines Unit, Hospital Universitari i Politècnic La Fe, Valencia. Spain. 2Instituto de Investigación Sanitaria La Fe, Valencia. Spain.

How to cite this paper

Resumen
Objetivo: El auge del desarrollo de los anticuerpos monoclonales supuso una revolución en la farmacoterapia de la enfermedad inflamatoria intestinal, principalmente enfermedad de Crohn y colitis ulcerosa. La monitorización de niveles plasmáticos de estos fármacos biológicos de forma programada y anticipada a un posible fracaso clínico del tratamiento se conoce como monitorización farmacocinética proactiva. Además, recientemente se han puesto a punto nuevas técnicas para el análisis farmacogenético que pueden predecir la respuesta a estos tratamientos, incluso antes de ser administrados. El objetivo de esta revisión sistemática es analizar los posibles beneficios de la monitorización proactiva y del análisis farmacogenético de fármacos biológicos en pacientes con enfermedad inflamatoria intestinal en términos de remisión clínica.

Método: Se buscó en las bases de datos Medline/Pubmed, Embase y Cochrane Library databases using the descriptors “proactive drug monitoring”, “biological drugs”, “inflammatory bowel disease” and “pharmacogenetics”. Only randomized clinical trials published between January 2015 and May 2021 were included; all articles whose main topic was not related to the topic were excluded by hand. The quality of the articles

KEYWORDS
Inflammatory bowel disease; Therapeutic drug monitoring; Pharmacogenetic testing; Proactive control; Monoclonal antibodies; TNF inhibitors.

PALABRAS CLAVE
Enfermedad inflamatoria intestinal; Monitorización farmacocinética; Análisis farmacogenético; Monitorización proactiva; Anticuerpos monoclonales; Inhibidores anti-TNF.

Received 30 June 2021; Accepted 26 July 2021.
DOI: 10.7399/fh.11780

KEYWORDS
Inflammatory bowel disease; Therapeutic drug monitoring; Pharmacogenetic testing; Proactive control; Monoclonal antibodies; TNF inhibitors.

PALABRAS CLAVE
Enfermedad inflamatoria intestinal; Monitorización farmacocinética; Análisis farmacogenético; Monitorización proactiva; Anticuerpos monoclonales; Inhibidores anti-TNF.
Introduction

The treatment of inflammatory bowel disease (IBD) experienced a radical change nearly two decades ago with the advent of monoclonal antibodies, particularly tumor necrosis factor antagonists (antiTNFs) such as infliximab (IFX), adalimumab, golimumab and certolizumab pegol. These drugs have allowed more effective control of the disease, a reduction in the number of hospitalizations and surgical procedures, and an improvement in the patients’ quality of life. Despite these benefits, many patients fail to respond to the treatment during the induction phase (primary therapeutic failure), while in others the lack of response occurs during the maintenance phase (secondary therapeutic failure). Although the reasons behind this failure to respond are not wholly understood, it seems that they may be related to individual pharmacokinetic or pharmacodynamic changes or to the immunogenicity of the medications.

The development of antiTNF agents has been accompanied by the design of a series of tools intended to measure the concentration of the drugs in plasma as well as anti-drug antibodies (ADAs) concentrations. AntiTNF therapeutic drug monitoring (TDM) in IBD has gained significant ground in the last decade. Numerous studies have sought to determine the most desirable concentrations for achieving clinical remission (CR) or mucosal healing as a function of: a) the antiTNF agent used; b) the condition diagnosed; and c) the point in the therapeutic process the patient is at.

Two kinds of TDM are used in clinical practice: reactive and proactive. The former, which has been used for longer, requires that drug and ADA concentrations only be obtained in the presence of signs that the treatment has failed or that symptoms have worsened; the goal is to explain whether a given relapse is due to low antiTNF concentrations. The latter provides for a regular determination of antiTNF plasma concentrations during quiescent phases of the disease to ensure optimal dosing, maintain drug concentrations within the therapeutic range, predict potential flare-ups of the disease, and prevent therapeutic failure. This may be particularly useful in patients at risk of treatment failure (e.g., those with more severe disease and/or with a history of antiTNF treatment) or to prepare for a change of approach following the loss of response (e.g., indicating a surgical procedure).

In the last few years, several new pharmacogenetic platforms have been developed, based on automated analyses, microarrays, genome-wide association studies (GWAS), and next generation sequencing (NGS). These new tools have made it possible to discover multiple polymorphisms capable of predicting the patients’ response to antiTNFs at the time of diagnosis, i.e., even before they are deemed eligible for treatment with biological agents. Their use is however not widespread in clinical practice.

The purpose of this systematic review is to analyze the potential benefits of proactive TDM and the pharmacogenetic analysis of biological drugs in IBD patients in clinical remission.

Methods

Literature search strategy

This systematic review was carried out by two independent reviewers in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The databases consulted included PubMed, EMBASE and the Cochrane Central Register of Clinical Trials. The search was completed on 30th May 2021.

The studies to be included in the review were selected independently by the two authors. A third reviewer resolved any disagreement.

Inclusion criteria

The study included randomized clinical trials (RCTs) published between January 2015 and May 2021 in English and Spanish, which met the following criteria: 1) They had to include a comparison of proactive vs. reactive TDM (or lack of TDM) in patients with IBD. 2) They had to include a pharmacogenetic analysis as a predictor of clinical response.

Exclusion criteria

Articles not specifically dedicated to the purpose of this study as well as observational analyses, reviews and non-RCT studies were excluded from the search.

Methodological quality

The methodological quality of the selected studies was evaluated using the Jadad scale, a critical reading tool made up of five questions related with the design of clinical trials that rates the quality of studies on a 5-point scale whereby trials obtaining less than 3 points are considered low quality and those scoring 5 points are considered rigorous.

The Cochrane risk-of-bias tool was used to determine the internal validity of the trials included.
Data extraction

The following data were extracted from the studies selected: design of the study, number of patients, mean or median patient age, therapeutic intervention, dosing regimen and main objective.

Results

The primary search yielded 228 journal and database citations. The secondary search produced one citation (Figure 1). Agreement between the reviewers regarding trial selection was excellent (kappa = 0.97).

The search strategy applied to the different databases yielded a total of 228 references. After removing 85 duplications and applying the inclusion and exclusion criteria a total of 143 references were obtained. Of these, 14 were rejected for not dealing with the subject being reviewed, 55 for not meeting the inclusion criteria (reviews, editorials, and other kinds of texts), and 68 because they were observational studies. Finally, seven studies were included after full-text reading (Figure 1). No RCT containing a pharmacogenetic analysis was found.

The assessment of the quality of the selected articles on the Jadad scale yielded scores between 1 and 5 points, with a median of 2 points (Table 1). The majority of trials included (71.4%) were open-label\(^{16,18}\), which earned them a score of 2 points (low methodological quality). After analyzing the RCTs, it was established that two had a low risk of bias\(^ {19,20}\) (Figure 2).

The most significant data in each study is summarized in Table 2.

Proactive versus reactive therapeutic drug monitoring

The TAXIT trial included 251 patients (173 with Crohn’s disease [CD] and 78 with ulcerative colitis [UC]) randomized to receive IFX dosed accor-

Table 1. Assessment of the quality of the clinical trials included in the study using the Jadad scale

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Q1* (0/1)</th>
<th>Q2* (0/1)</th>
<th>Q3* (0/1)</th>
<th>Q4** (+1/-1)</th>
<th>Q5***(+1/-3)</th>
<th>Final score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vande Casteele et al. (2015)(^ {18})</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>–1</td>
<td>2</td>
</tr>
<tr>
<td>D’Haens et al. (2018)(^ {20})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td>+1</td>
<td>5</td>
</tr>
<tr>
<td>Assa et al. (2019)(^ {17})</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>–1</td>
<td>2</td>
</tr>
<tr>
<td>Colombel et al. (2020)(^ {19})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td>+1</td>
<td>5</td>
</tr>
<tr>
<td>Bossuyt et al. (2020)(^ {16})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>–1</td>
<td>1</td>
</tr>
<tr>
<td>Strik et al. (2021)(^ {15})</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>–1</td>
<td>2</td>
</tr>
<tr>
<td>Syversen et al. (2021)(^ {14})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td>–1</td>
<td>2</td>
</tr>
</tbody>
</table>

Score = *0: no; 1: yes; **–1: no; 1: yes. Abbreviations: Q1: Was the study randomized?; Q2: Was it a double-blind study?; Q3: Does the study include a description of subjects lost to follow-up or who withdrew from the study?; Q4: Was the method used for generating the randomization sequence adequate and properly described?; Q5: Was the blinding method appropriate and properly, described? Scores < 3 indicate low quality.
on a combination of symptoms, biomarkers and/or IFX plasma levels, was not higher than that based only on symptoms.

The PAILOT trial was designed to determine whether proactive TDM was associated with higher rates of CR in pediatric CD patients under 18 treated with adalimumab. The primary endpoint was evidenced by corticosteroid-free CR (Pediatric Crohn’s Disease Index [PCDAI] < 10 points) at all follow-up visits from week 8 to week 72. The study compared a group subjected to proactive TDM of adalimumab (n = 38) with a reactive monitoring group (n = 40). In the first, concentrations were measured at weeks 4 and 8 and every two months thereafter until the end of the study. The target concentration was 5 μg/mL. Anti-adalimumab antibodies were detected in patients with concentrations below 0.3 μg/mL. Patients in the reactive TDM group were only tested for levels if there were signs that they were not responding to the treatment. Adalimumab concentrations were higher in the proactive TDM group (71 μg/mL vs 6.2 μg/mL, p = 0.001) and 31 patients (82%) achieved a PCDAI < 10 points in the proactive TDM group as compared with 19 (48%) in the reactive TDM group (p = 0.002). At week 72, 33 patients (87%) in the proactive TDM group had their adalimumab dosing intensified vs. 24 (60%) in the reactive TDM group (p = 0.001).

In the SERENI-UC study, Colombel et al. compared a high-dose adalimumab regimen (40 mg a week) with a standard regimen (40 mg every 2 weeks) in adult patients with active severe Crohn’s disease. At the end of induction at week 8, patients were randomized in a 2:1 ratio to 40 mg adalimumab once a week, to 40 mg every two weeks, and to an exploratory arm where 40 mg of adalimumab was administered, with the dose being adjusted during the maintenance phase based on proactive TDM (to achieve concentrations > 10 μg/mL and the symptoms observed [lecal bleeds ≥ 1]). The primary endpoint was the CR rate at 52 weeks in patients who responded to the treatment at week 8. The CR rate at week 52 was 39.5% for patients treated with weekly adalimumab, 29% for patients on adalimumab every two weeks, and 36.5% for patients where adalimumab was dosed based on monitoring.

Bossuyt et al. compared an algorithm-based proactive monitoring strategy (n = 115) with a reactive monitoring strategy (n = 72) of IFX. The primary endpoint was the treatment failure rate. The secondary endpoint was CR at 6 and 12 months from initiation of the study. After one year, the treatment failure rate in the proactive TDM group was 19% vs 10% (p = 0.08) for the reactive TDM group. CR rates were similar in both groups (73% vs 83%, p = 0.17).

The PRECISION trial randomized 80 CD and UC patients in CR (MS ≤ 2 and HBI ≤ 4) after at least 14 weeks on IFX to receive it adjusted on the basis of pharmacokinetic Bayesian estimations to keep trough levels above 3 μg/mL (BE group) or to continue with the same treatment without any dose and/or dosing interval adjustments (control group). After one year into the trial, 28/32 (88%) of patients in the BE group were in CR as compared with 25/39 (64%) of patients in the control group (p = 0.017). However, no differences were observed in the median IFX plasma levels (3.8 μg/mL in the BE group vs 2.9 μg/mL in the control group; p = 0.563). Median concentrations of fecal calprotectin were significantly lower in the BE group than in the control group (147 μg/g vs 144 μg/g, p = 0.031).

The NQR-DRUM trial evaluated whether proactive TDM during induction improved the efficacy of treatment as compared with standard unmonitored IFX therapy in chronic immune-mediated diseases (including CD and UC) treated with IFX. This was a 38-week-long open-label RCT whose main goal was to evaluate the CR rate achieved at week 30. Although blood samples were drawn from patients in the standard therapy arm to determine IFX plasma levels, only clinical parameters were evaluated. CR was set at a MS ≤ 2 for UC and a HBI ≤ 4 for CD. The CR rate in patients with UC was 61.4% in the proactively monitored group and 70.7% in the reactively monitored one. In CD patients, the CR rate was 38.6% in the proactive TDM group and 60.7% in the reactive group, without statistically significant differences being observed between the groups.

Pharmacogenetic analysis

Evaluation of genetic markers associated to the efficacy and tolerance of biological medications has become increasingly common in patients with CD and UC. No randomized studies were found that could be included in this section. Only two cohort studies were identified that did not meet the inclusion criteria.
<table>
<thead>
<tr>
<th>Trial (year)</th>
<th>Design</th>
<th>Drug</th>
<th>Clinical intervention</th>
<th>Concomitant IM (AZA, 6-MP, MTX)</th>
<th>N</th>
<th>Mean age (SD)</th>
<th>Results of the primary variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vande Casteele et al. (2015)</td>
<td>RCT, open-label, 52w, phase IV</td>
<td>IFX</td>
<td>Symptom-based R-TDM</td>
<td>CD: 82 & UC: 4: 42.0 (32.0-48.0)</td>
<td>6</td>
<td>CR at one year after optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011-002061-38 (TAXIT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R-TDM 81/123 (66%). In CD 55% & in UC 88% vs P-TDM 88/128 (69%) ARR 2.9% (95% CI: –8.7 to 14.5) (p = 0.686). In CD 63% ARR 7.8% 95% CI (-6.9-22.4) (p = 0.353) & in UC 84% RAR < 4.0% (95% CI: –19.6-11.5) (p = 0.748)</td>
</tr>
<tr>
<td>D’Haens et al. (2018)</td>
<td>RCT, double-blind, phase IV, 54w</td>
<td>IFX</td>
<td>DIS1: Dose increase by increments of 2.5 mg/kg maximally two times to a maximum dose of 10 mg/kg (according to a specific algorithm)</td>
<td>CD: 45</td>
<td>29.1 (22.7-44.5)</td>
<td>CR without corticosteroids (CDAI < 150) from w22 to w54 & endoscopic healing at w54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCT01442025 (TAILORIX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIS1: 33% vs DIS2: 27% vs Control: 40% (p = 0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIS2: Dose increase by increments of 5 mg/kg, maximally one time to a maximum dose of 10 mg/kg (according to a specific algorithm)</td>
<td>CD: 37</td>
<td>30.2 (24.0-47.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control: Dose increase of 5-10 mg/kg if CDAI > 220 at current appointment or if CDAI = 150-220 during the two weeks prior to current appointment</td>
<td>CD: 40</td>
<td>28.7 (21.5-39.9)</td>
<td>DIS1 vs control ARR –6.7% (95% CI: –27.2-13.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIS2 vs control ARR –13% (95% CI: –33.8-7.9%)</td>
</tr>
<tr>
<td>Assa et al. (2019)</td>
<td>RCT, phase IV, open-label, 72w</td>
<td>ADA</td>
<td>R-TDM</td>
<td>CD: 40</td>
<td>14.6 (2.6)</td>
<td>CR (PCDAI < 10) from w8 to w7 without corticosteroids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCT02256462 (PAILOT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R-TDM 19/40 (48%) vs P-TDM 31/38 (82%) ARR: 34.1% (95% CI: 14.3-53.9) (p = 0.002)</td>
</tr>
<tr>
<td>Colombel et al. (2020)</td>
<td>RCT, double-blind, phase III, 52w</td>
<td>ADA</td>
<td>ST: 40 mg qw; 40 mg q2w, P-TDM: maintenance of plasma concentrations above 5 μg/mL</td>
<td>NA</td>
<td>151 (UC)</td>
<td>CR with q5w regimen in responders at w8 ST: 40 mg qw: 39.5% (1) 40 mg q2w: 29.0% (2) P-TDM 36.5% ARR (1) –3.0% (95% CI: –16.4 to 10.5) ARR (2): 7.5% (95% CI: –5.7 to 20.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCT02065622 (SERENE-UC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bossuyt et al. (2020)</td>
<td>RCT, open-label, phase IV, 52w</td>
<td>IFX</td>
<td>P-TDM-cohort to maintain plasma concentrations between 3-7 μg/mL</td>
<td>NA</td>
<td>115</td>
<td>CR between 6mos & 12mos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCT04775732</td>
<td></td>
<td>R-TDM cohort</td>
<td></td>
<td></td>
<td></td>
<td>P-TDM 75% vs R-TDM 83% ARR < 6% (95% CI: –20.3 to 3.2) (p = 0.17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strik et al. (2021)</td>
<td>RCT, phase IV, open-label, 52w</td>
<td>IFX</td>
<td>ST: 5 mg/kg q8w</td>
<td>CD: 33; UC: 7</td>
<td>37 (25-52)</td>
<td>CR at one year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCT02453776 (PRECISION)</td>
<td></td>
<td>P-TDM: to maintain plasma concentrations at 3 μg/mL</td>
<td></td>
<td></td>
<td></td>
<td>ST: 25.39 (64%). In CD: 63.6% and in UC 71.4% vs P-TDM: 28.32 (88%) ARR: –23.4% [–42.3 to –4.5] (p = 0.017). In CD: 90.9% ARR 27.3% [95% CI: 8.2% to 46.4%] (p = 0.008) & in UC: 85.7% ARR 14.3% [95% CI: –28.0 to 56.6] (p = 0.515)</td>
</tr>
</tbody>
</table>
Table 2 (cont.). Randomized clinical trials on proactive therapeutic drug monitoring

<table>
<thead>
<tr>
<th>Trial (year)</th>
<th>Design</th>
<th>Drug</th>
<th>Clinical intervention</th>
<th>Concomitant IM (AZA, 6-MP, MTX)</th>
<th>N</th>
<th>Mean age (SD)</th>
<th>Median (range)</th>
<th>Results of the primary variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syversen et al. (2021)</td>
<td>RCT, open-label, 38w</td>
<td>NCT03074655 (NOR-DRUM)</td>
<td>IFX ST. 5 mg/kg at w0, w2 & w6 and q8w thereafter. Adjustments according to clinical parameters</td>
<td>CD:28; UC:41</td>
<td>14 (50%) (CD); 17 (41%) (UC)</td>
<td>CD: 41.0 (11.5)</td>
<td>UC:41.3 (16.2)</td>
<td>CR: at 30w</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P-TDM: 5 mg at w0. After that, the dose is adjusted depending on plasma concentrations, using a specific algorithm</td>
<td>CD: 29; UC: 39</td>
<td>23 (79%) (CD); 15 (38%) (UC)</td>
<td>CD: 35.4 (11.0)</td>
<td>UC: 38.8 (14.5)</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

The present systematic review analyzed a series of clinical trials dedicated to investigating the results of proactive TDM and the advances made in the pharmacogenetic analysis of IBD patients.

Only two of the studies analyzed found proactive TDM to be superior to reactive strategy as no concentration-guided dose adjustments were made[15,17]. It should nonetheless be remembered that the first of these studies used IFX in adult patients whereas the second used adalimumab in pediatric patients, which precludes drawing any hard-and-fast conclusions. The study by Sink et al. is the only one in the series to include a Bayesian estimation strategy with a population-based pharmacokinetic model to achieve the target plasma level. These systems make it possible not only to consider patient-related data but also factors that affect the pharmacokinetic profile of these drugs (doses and previous concentrations, anti-drug antibody concentrations, etc.), which makes them appropriate dosage individualization tools.

In 2017 the American Gastroenterological Association published a series of recommendations[22], which limited the use of reactive TDM to patients with active IBD treated with antiTNFs. Proactive TDM was not recommended as the information available was deemed insufficient. Since then, no further recommendations have been issued by other associations in their guidelines[22,23] probably due to the absence of high quality studies in large cohorts contributing conclusive results. Borren et al. recently sought to determine whether IFX levels measured in the context of clinical and endoscopic remission were able to predict loss of response over a 2-year follow-up period. These authors did not observe any differences between IFX plasma levels in patients with and without loss of response[24]. Despite the uncertainty, it would seem appropriate to measure biological drug concentrations in these cases as personalization of treatment does allow economic savings based on optimizing the administered doses[25-27].

Furthermore, in 2019 an expert panel recommended proactive TDM for antiTNF in IBD patients at the end of the induction phase and at least once during the maintenance phase. In patients with primary or secondary loss of response they recommended a reactive monitoring strategy. As regards the new drugs for IBD e.g., vedolizumab and ustekinumab) proactive TDM may be appropriate at the end of the induction phase and reactive monitoring in case of secondary loss of response. Evidence for this is however still very limited[28].

In this regard, Papamichael et al. demonstrated that proactive monitoring was superior to reactive TDM in patients on adalimumab[21]. Similarly, proactive TDM for IFX showed itself to be superior to reactive TDM when comparing the data with that of a retrospective cohort[29]. It should be mentioned that most of the information available in the literature comes from observational cohort studies on IFX, data on adalimumab being scarce. Syed et al. observed that proactive TDM for both IFX and adalimumab was superior to reactive strategy [odds ratio (OR): 4.76; 95% CI: 1.65-13.67, \(p = 0.0019 \)] and to the control group [OR: 6.10; 95% CI: 2.19-17.02, \(p = 0.0002 \)] in achieving persistence of treatment at one year[22].

Gríñádez-Montero et al. recently reviewed the TDM strategies for antiTNFs as well as the use of individualized dosing methods in IBD patients. The authors did not describe the inclusion or exclusion criteria of the studies on TDM strategies, with both randomized and observational studies being selected. The conclusion was that there is a trend toward the use of proactive TDM at the expense of reactive one as the former is associated with a longer response to treatment and a lower rate of relapses and discontinuations, although the available evidence is still limited and of poor quality[30].

Performance of genetic tests prior to initiating treatment with biological drugs in patients with IBD may constitute one more step on the way towards treatment individualization. The advantages of such tests include an increase in patient safety; a higher effectiveness of the treatment; and less expenses for the health system. One of the most significant findings to date was made by the PANTS prospective study, performed in 1,240 untreated patients. The study revealed an association between the HLA-DQA1*05 (rs2097632) locus and a higher rate of immunogenicity (hazard ratio (HR) 1.90; 95% CI: 1.62-2.25; \(p < 0.001 \)) and of anti-IFX and anti-adalimumab antibody development. The authors observed higher immunogenicity rates at one year (92%) in patients on IFX monotherapy who were carriers of the HLA-DQA1*05 haplotype. The lowest immunogenicity was observed in patients on adalimumab combined with an immunomodulator who were not carriers of that allele[31].

Another retrospective study on 252 patients with IBD showed the HLA-DQA1*05 haplotype to significantly increase the risk of anti-IFX antibody formation (HR 7.29; 95% CI 2.97-17.19; \(p = 0.0019 \)) independently of the patient’s age, sex, and weight and immunomodulator use, such factors being typically associated with a faster clearance of monoclonal antibodies. It was estimated that including immunomodulators in the patients’ dosing regimen reduced the immunogenicity risk by 38% in both carriers and non-carriers (HR 0.62; 95% CI: 0.30-1.28)[32].

A GIVAS study identified genetic variants in the CD26 locus (rs9828223, \(p < 0.001 \)) associated with immunogenicity and with a loss of clinical response[33].

A study from the Netherlands reported on a genetic test that included several polymorphisms (among them HLA-DQA1*05, PMT, NUDT15) associated with the immunogenicity of antiTNF agents or with toxic effects in thiopurines (e.g., myelosuppression or pancreatitis)[34]. These findings should prompt research into other disciplines where IFX plays a key role in treatment algorithms (e.g., rheumatology). The results of the INHERIT...
The limitations of the present review are related to the differences between the various RCTs included regarding their design and population characteristics, analyzed drugs, activity scores and the phase at which the measurements were performed (induction or maintenance). This heterogeneity prevented a joint analysis of the results of the different trials. There is therefore a need to carry out prospective RCTs with more homogeneous designs and larger patient cohorts to come up with a more robust analysis of the benefits of proactive TDM in IBD patients.

To conclude, TDM allows an individualized adjustment of treatment with biological drugs in patients with IBD. The available evidence is still limited and low-quality, which prevents making hard-and-fast conclusions about the superiority of proactive vs. reactive TDM. On the other hand, the recent development of pharmacogenetic analysis techniques could allow an ex-ante selection of the patients most likely to derive a greater benefit from a specific technique as a function of their genotype. When more data is available, the combination of both strategies could herald a significant transformation in the way IBD patients are managed. It will be essential for pharmacists to play a key role in the multidisciplinary teams taking care of IBD patients.

Funding

No funding.

Acknowledgements

The authors would like to thank SETH’s PKGen Group for inviting them to contribute this paper to the Revista’s special issue on personalized pharmacokinetics in clinical practice.

Conflict of interest

No conflict of interests.

Bibliography

Proactive therapeutic drug monitoring and pharmacogenetic analysis in inflammatory bowel disease: A systematic review

35. Preemptive HLA Genotyping for the Safe Use of Infliximab-combination Therapy in Inflammatory Bowel Disease (INHERIT) [Internet] [accessed 06/26/2021]. Available at: https://clinicaltrials.gov/ct2/show/NCT04109300