

# Pfizer

# Lectura interpretada e interpretación del antibiograma

6 de julio de 2020



### **Conflicts of interest**



*Clinical data coordinator* (2007 – 2012, 2016 – ) *Chairman* (2012 – 2016)

Member of the Intrinsic Resistance Working Group (2013 – ) Advisor (2016 – 2017)

Member of *Comité Español del Antibiograma* (2014 – 2019)

### Antimicrobial susceptibility testing (Antibiogram)



 To predict the clinical success or failure of an specific antibiotic treatment (either definitive or for empirical use)

Relevant for the patient

- To generate epidemiological alerts to establish accurate control measures and prevention of infection
- To know the epidemiology of antibiotic resistance (emergence, evolution and dispersion) mechanisms and to evaluate the control measures



#### Phenotypic test methods:

#### based on antimicrobial activity and breakpoints

- MIC determination (broth, agar, gradient diffusion)
- Disk diffusion (EUCAST, BSAC, CA-SFM, CLSI, SRGA, ...)
- Automated systems (Vitek, Phoenix, MicroScan, Sensititre, ...)

#### Genotypic test and proteomic methods:

based on the detection of a *resistance gene* or its *product* 

- mecA, vanA, vanB, bla<sub>KPC</sub>, ...
- PBP2a detection, β-lactamase detection, ...
- MALDITOF methods, ...
- PCR and whole genome sequencing (WGS)

### By deduction – "expert rules"

- IF mecA-positive, THEN report β-lactam antibiotics as R, except ...
- IF erythromycin-R, THEN report azithromycin and clarithromycin as R

- ... .... .... ....



## Minimal inhibitory concentration (MIC)



Clinical laboratory testing and *in vitro* diagnostic test systems — Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices —

#### Part 1:

Reference method for testing the *in vitro* activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases

## MICs...

- Well standardized biological method but highly influence by
  - Testing conditions (media, bacterial inoculum, growth phase, incubation period and temperature, ...)
  - Double dilution system
- Slow procedure as a traditional overnight method (16-18 h)
- Included in regulatory procedures (EMA, FDA)

- Phenotypic resistance detection based in MIC values
- PK/PD analysis using MIC values as PD
- Clinical outcome correlation with MIC values

## Minimal inhibitory concentration (MIC)

• MIC: The lowest concentration of an antimicrobial agent that inhibits the visible growth of a microorganisms after an overnight incubation



- MIC values are used to predict clinical outcome according to previously established clinical breakpoints (EUCAST & CLSI)
- MIC values are associated with the absence or presence of a resistance mechanism (interpretive reading)

### Antimicrobial susceptibility testing committees



Breakpoints are defined for clinical purposes (to treat patients) and not with the specific aim to detect resistance mechanisms Epidemiological cut-off values can be used to detect resistance mechanisms

## **ECOFFs / ECV and clinical breakpoints**

Ciprofloxacin / Escherichia coli International MIC Distribution - Reference Database 2019-11-11

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance



 The epidemiological cut-off value (ECOFF) separates microorganisms without (wild type) and with acquired resistance mechanisms (non-wild type) to the agent https://mic.eucast.org/Eucast2/

 The clinical breakpoints are used to classify microorganisms into clinical categories (S/I/R) to predict clinical success or failure when testing *in vitro* (antibiogram) an antimicrobial agent

### Interpretive reading of the antibiogram

- 1.- To determine the <u>susceptibility and resistance phenotype</u>
- 2.- To infer the potential <u>resistance mechanism</u> behind the phenotype
- 3.- To predict the phenotype previously determined from the resistance mechanism and to <u>infer the activity of the different antimicrobials</u> expressing the phenotype

Patrice Courvalin, ASM News, 1992

#### Susceptibility and resistance phenotype:

Conjunction of susceptibility testing results (MICs) of a microorganisms for a group of antimicrobial agents, normally belonging to a single family

### Interpretive reading of the antibiogram



### Requirements

- Adequate identification of the microorganism
- Recognition of intrinsic resistances
- Analysis of susceptibility/resistance phenotype
- Use of antimicrobials as markers of resistance mechanisms
- Analysis of antibiotic + inhibitor combinations
- Determine quantitative susceptibility testing values (MIC / mm)
- Use of high inoculum in certain situations
- To know the local epidemiology / trends in antimicrobial resistance
- To implement ancillary tests and reference molecular techniques

Courvalin P. ASM News 1992;58:368-75; Livermore DM et al. J Antimicrob Chemother 2001;48(Suppl 1):87-102 Cantón R. Enferm Infecc Microbiol Clin 2002; 20: 176-86; Cantón R. Enferm Infecc Microbiol Clin 2010; 28:375-85; Leclercq R et al. Clin Microbiol infect 2013; 19:141-60; Cantón R et al. Enferm Infecc Microbiol Clin 2020;38:182-7

#### **Relevance of bacterial identification**

| Antimicrobial MIC (r                               | mg/L)  | Organisms     | Potential phenoype                                              |
|----------------------------------------------------|--------|---------------|-----------------------------------------------------------------|
| Ampicillin>6Amox/clav>32Ticarcillin>6Piperacillin3 | /16 4  | E. coli       | AmpC hyperproduction<br>plasmid AmpC<br>ESBL + porin deficiency |
| Piper/Tazo16.Cefuroxime>6Cefoxitin>3Cefotaxime2    | 4 2    | K. pneumoniae | ESBL + porin deficiency                                         |
| Ceftazidime8Ceftazidime1Cefepime1Ertapenem2        | 3<br>I | E. cloacae    | ESBL                                                            |



European Society of Clinical Microbiology and Infectious Diseases

#### **Intrinsic resistance**

#### EUCAST Expert Rules Version 3.1

#### Intrinsic Resistance and Exceptional Phenotypes Tables

EUCAST Expert Rules version 2.0 was published on 29 October 2011(http://www review over the past year and changes to the intrinsic resistance and exceptional consultation (October-December 2015) and further discussion in the EUCAST St exceptional phenotypes tables 1-7 (version 3.0), together with a summary of char Version 3.1includes corrections to typographical errors in year 3.0.

| Rule<br>no. | Organisms                                                 | Ampicillin | Amoxicilin-<br>Clavulanic acid | Ampicillin-sulbactam | Ticarcillin | Cefazolin, Cefalotin<br>Cefalexin, Cefadroxil | Cefoxitin <sup>2</sup> | Cefuroxime | Tetracyclines  | Tigecycline | Polymyxin B,<br>Colistin | Nitrofurantoin |
|-------------|-----------------------------------------------------------|------------|--------------------------------|----------------------|-------------|-----------------------------------------------|------------------------|------------|----------------|-------------|--------------------------|----------------|
| 1.1         | Citrobacter koseri, Citrobacter amalonaticus <sup>3</sup> | R          |                                |                      | R           |                                               |                        |            |                |             |                          |                |
| 1.2         | Citrobacter freundii <sup>4</sup>                         | R          | R                              | R                    |             | R                                             | R                      |            |                |             |                          |                |
| 1.3         | Enterobacter cloacae complex                              | R          | R                              | R                    |             | R                                             | R                      |            |                |             |                          |                |
| 1.4         | Enterobacter aerogenes                                    | R          | R                              | R                    |             | R                                             | R                      |            |                |             |                          |                |
| 1.5         | Escherichia hermannii                                     | R          |                                |                      | R           |                                               |                        |            |                |             |                          |                |
| 1.6         | Hafnia alvei                                              | R          | R                              | R                    |             | R                                             | R                      |            |                |             |                          |                |
| 1.7         | Klebsiella pneumoniae                                     | R          |                                |                      | R           |                                               |                        |            |                |             |                          |                |
| 1.8         | Klebsiella oxytoca                                        | R          |                                |                      | R           |                                               |                        |            |                |             |                          |                |
| 1.9         | Morganella morganii                                       | R          | R                              | R                    |             | R                                             |                        |            | R              |             | R                        | R              |
| 1.10        | Proteus mirabilis                                         |            |                                |                      |             |                                               |                        |            | R              | R           | R                        | R              |
| 1.11        | Proteus penneri                                           | R          |                                |                      |             | R                                             |                        | R          | R              | R           | R                        | R              |
| 1.12        | Proteus vulgaris                                          | R          |                                |                      |             | R                                             |                        | R          | R              | R           | R                        | R              |
| 1.13        | Providencia rettgeri                                      | R          | R                              | R                    |             | R                                             |                        | R          | R              | R           | R                        | R              |
| 1.14        | Providencia stuartii                                      | R          | R                              | R                    |             | R                                             |                        | R          | R              | R           | R                        | R              |
| 1.15        | Raoultella spp.                                           | R          |                                |                      | R           |                                               |                        |            |                |             |                          |                |
| 1.16        | Serratia marcescens                                       | R          | R                              | R                    |             | R                                             | R                      | R          | R <sup>5</sup> |             | R                        | R              |
| 1.17        | Yersinia enterocolitica                                   | R          | R                              | R                    | R           | R                                             | R                      |            |                |             |                          |                |
| 1.18        | Yersinia pseudotuberculosis                               |            |                                |                      |             |                                               |                        |            |                |             | R                        |                |
| R = re      | esistant                                                  |            |                                |                      |             |                                               |                        |            |                | 1           |                          |                |

### Interpretive reading of the antibiogram: *K. pnueumoniae*

| Antibiotic  | MIC<br>(mg/L) | Interpre-<br>tation |
|-------------|---------------|---------------------|
| Amoxicillin | >16           | R                   |
| Amoxi-clav  | ≤4/2          | S                   |
| Piper-tazo  | ≤8/4          | S                   |
| Cefuroxime  | ≤0.5          | S                   |
| Cefotaxime  | ≤0.06         | S                   |
| Ceftazidime | ≤0.06         | S                   |
| Cefepime    | ≤0.06         | S                   |
| Aztreonam   | ≤0.06         | S                   |
| Ceftol-Tazo | ≤0.5/4        | S                   |
| Cefta-avib  | ≤0.5/4        | S                   |
| Ertapenem   | ≤0.5          | S                   |
| Imipenem    | ≤0.5          | S                   |
| Meropenem   | ≤0.5          | S                   |

Wild type

| Antibiotic  | MIC<br>(mg/L) | Interpre-<br>tation |
|-------------|---------------|---------------------|
| Amoxicillin | >16           | R                   |
| Amoxi-clav  | ≤4/2          | S                   |
| Piper-tazo  | ≤8/4          | S                   |
| Cefuroxime  | >16           | R                   |
| Cefotaxime  | >16           | R                   |
| Ceftazidime | 2             | 1                   |
| Cefepime    | 0.5           | S                   |
| Aztreonam   | 0.5           | S                   |
| Ceftol-Tazo | 1/4           | S                   |
| Cefta-avib  | 1/4           | S                   |
| Ertapenem   | 2             | S                   |
| Imipenem    | ≤0.5          | S                   |
| Meropenem   | ≤0.5          | S                   |

**ESBL** 

| Antibiotic  | MIC<br>(mg/L) | Interpre-<br>tation |
|-------------|---------------|---------------------|
| Amoxicillin | >16           | R                   |
| Amoxi-clav  | >16/8         | R                   |
| Piper-tazo  | >64/4         | R                   |
| Cefuroxime  | >16           | R                   |
| Cefotaxime  | >16           | R                   |
| Ceftazidime | >16           | R                   |
| Cefepime    | >16           | R                   |
| Aztreonam   | >4            | R                   |
| Ceftol-Tazo | >8/4          | S                   |
| Cefta-avib  | 4/4           | S                   |
| Ertapenem   | >8            | R                   |
| Imipenem    | <8            | R                   |
| Meropenem   | 8             | I                   |

#### Carbapenemase

EUCAST, 2020 interpretive criterio (www.eucast.org)

## Carbapenemase producing Enterobacterales (CPE)

 Carbapenemases: β-lactamases that hydrolyze penicillins, in most cases cephalosporins, and to varying degrees carbapenems and monobactams, the latter not hydrolyzed by metallo-β-lactamases)

- not all carbapenemases produce carbapemem (clinical) resistance



## The antimicrobial resistance challenge: the carbapenemases

#### Klebsiella pneumoniae

Carbapenemases

- Complex classification
- Variable expression of the enzyme
- Different phenotypes
- Superimposed with other resistance mechanism, even with other different carbapenemases
- Different inhibition profile of β-lactamase inhibitors

Cantón et al. Clin Microbiol Infect 2012; 18:413-31

|             |           | MIC in mg/ | L (clinical in | terpretation | )                    |
|-------------|-----------|------------|----------------|--------------|----------------------|
| Antibiotic  | Wild type | VIM-1      | KPC -3         | OXA-48       | OXA-48 +<br>CTX-M-15 |
| Amoxicillin | >16 (R)   | >16 (R)    | >16 (R)        | >16 (R)      | >16 (R)              |
| Amox./clav. | ≤4/2 (S)  | >16/2(R)   | >16/2 (R)      | >16/2 (R)    | >16/2 (R)            |
| Pip./taz.   | ≤16/4 (S) | >64/4 (R)  | >64/4 (R)      | >64/4 (R)    | >64/4 (R)            |
| Cefuroxime  | 8 (S)     | >16 (R)    | >16 (R)        | 8 (S)        | >16 (R)              |
| Cefoxitin   | ≤8(S)     | >32 (R)    | 16 (R)         | ≤8(S)        | 16 (R)               |
| Cefotaxime  | ≤1(S)     | >16 (R)    | >16 (R)        | ≤1(S)        | >16 (R)              |
| Ceftazidime | ≤1(S)     | >8 (R)     | >8 (R)         | ≤1(S)        | >8 (R)               |
| Cefepima    | ≤1(S)     | 8 (R)      | 8 (R)          | ≤1(S)        | 8 (R)                |
| Aztreonam   | ≤1(S)     | 1 (S)      | >16 (R)        | ≤1(S)        | >16 (R)              |
| Imipenem    | ≤0.5 (S)  | 2 (S)      | 4 (R)          | 2(S)         | 2(2)                 |
| Meropenem   | ≤0.5 (S)  | 2 (S)      | 4 (R)          | 0.5(S)       | 0.5(2)               |
| Ertapenem   | ≤0.5 (S)  | 4 (R)      | >4 (R)         | 1 (R)        | 2 (R)                |

Data from Clinical Microbiology Dept. Hosp. Ramón y Cajal. Madrid. Spain

## Interpretive reading of antimicrobial susceptibility testing results

- During more than twenty-five years interpretive reading of the antibiogram has been used to:
  - infer resistance mechanisms behind resistant phenotypes
  - identify resistant organisms for infection control purposes
  - apply expert rules\* and modify (when needed!) clinical categorization

Courvalin P. ASM News 1992;58:368-75 Livermore et al. J Antimicrob Chemother 2001;48(Suppl 1):87-102 Cantón R. Enferm Infecc Microbiol Clin 2002; 20: 176-86 Cantón R. Enferm Infecc Microbiol Clin 2010; 28:375-85 Leclercq et al. Clin Microbiol infect 2013; 19:141-60

This approach was partially needed due to inadequate breakpoints!

\*expert rule: action to be taken (normally S or I to R), based on current clinical or microbiological evidence, in response to specific AST results

## Interpretive reading of antimicrobial susceptibility testing results

#### Interpretative reading, the classical examples: ESBLs and carbapenemases



EUCAST Expert rules. V1 2008; Livermore et al. J Antimicrob Chemother 2012; 67:1569-77

## ESBL and carbapenemase producers: current recommendations

#### Footnote recommendations in EUCAST breakpoint tables

The cephalosporin breakpoints for Enterobacteriaceae will detect all disically important resistance mech Report as tested! (including ESBL and plasmid med AmpC). Some isolates that lactamases are susceptible or in to 3<sup>rd</sup> or 4<sup>th</sup> gen. cephak breakpoints and should be **tested**, *i.e.* the presence or ab ESBL does not in itself innuen categorisation of susceptibility. ESBL detection and characterisation are recommended for public health and infection control purposes

carbapenem breakpoints for obacte aceae will detect all clinically resistance mechanisms (including **carbapenemases**). Some produce carbapenemase are susceptible with these and should be reported as e presence or absence of a benemase does not in itself influence the categorisation of susceptibility. Carbapenemase detection and characterisation for are recommended public health infection and control purposes

### Antimicrobial susceptibility testing committees



Breakpoints are defined for clinical purposes (to treat patients) and not with the specific aim to detect resistance mechanisms Epidemiological cut-off values can be used to detect resistance mechanisms

### **EUCAST Breakpoints – 2020**

#### **European Committee on Antimicrobial Susceptibility Testing**

Breakpoint tables for interpretation of MICs and zone diameters Version 10.0, valid from 2020-01-01

This document should be cited as "The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020. http://www.eucast.org."

| Content                                      | Darra        | Additional information                                      |                   | ——– www.ecuast.org                                                        |
|----------------------------------------------|--------------|-------------------------------------------------------------|-------------------|---------------------------------------------------------------------------|
|                                              | Page         | Additional information                                      |                   |                                                                           |
| Changes                                      | 1            |                                                             |                   |                                                                           |
| Notes                                        | 9            |                                                             |                   |                                                                           |
| Guidance on reading EUCAST Breakpoint Tables | 11           |                                                             |                   |                                                                           |
| Dosages                                      | 12           |                                                             |                   |                                                                           |
| Information on technical uncertainty         | 16           |                                                             |                   |                                                                           |
| Enterobacterales                             | 18           |                                                             |                   |                                                                           |
| Pseudomonas spp.                             | 23           |                                                             |                   |                                                                           |
| Stenotrophomonas maltophilia                 | 28           | Link to Guidance Document on Stenotrophor                   | ionas maltophilia |                                                                           |
| Acinetobacter spp.                           | 29           |                                                             |                   |                                                                           |
| Staphylococcus spp.                          | 34           |                                                             |                   |                                                                           |
| Enterococcus spp.                            | 39           |                                                             |                   |                                                                           |
| Streptococcus groups A, B, C and G           | 44           |                                                             |                   |                                                                           |
| Streptococcus pneumoniae                     | 49           |                                                             |                   |                                                                           |
| Viridans group streptococci                  | 55           |                                                             |                   |                                                                           |
| Haemophilus influenzae                       | 60           |                                                             |                   |                                                                           |
| Moraxella catarrhalis                        | 66           |                                                             |                   |                                                                           |
| Neisseria gonorrhoeae                        | 70           |                                                             |                   |                                                                           |
| Neisseria meningitidis                       | 74           |                                                             | -                 |                                                                           |
| Gram-positive anaerobes                      | 78 Content   |                                                             | Page              | Additional information                                                    |
| Clostridioides difficile                     | 00           | la pneumophila                                              | 104               |                                                                           |
| Gram-negative anaerobes                      | 04           | oterium tuberculosis                                        | 105<br>106        | Link to Guidance Document on Topical Agents                               |
| Helicobacter pylori                          | 00 01 00 (   | agents<br>Non-species related) breakpoints                  |                   | Link to Guidance Document on Topical Agents                               |
| Listeria monocytogenes                       | 09 Export D  |                                                             | 107               | Link to EUCAST Expert Rules                                               |
| Pasteurella multocida                        |              | n of Resistance Mechanisms                                  | -                 | Link to EUCAST Expert Rules                                               |
| Campylobacter jejuni and coli                | 92 Antimicro | obial susceptibility tests on groups of organisms or agents | -                 | Link to Guidance Document on how to test and interpret results when there |
| Corynebacterium spp.                         | 93 for which | there are no EUCAST breakpoints                             | -                 | are no breakpoints                                                        |
| Aerococcus sanguinicola and urinae           | 95           |                                                             |                   |                                                                           |
| Kingella kingae                              | 97           |                                                             |                   |                                                                           |
| Aeromonas spp.                               | 99           |                                                             |                   |                                                                           |
| Burkholderia pseudomallei                    | 101          |                                                             |                   |                                                                           |
| Burkholderia cepacia complex                 | 103          | Link to Guidance Document on Burkholderia                   | cenacia complex   |                                                                           |

### **EUCAST Breakpoints: dosages** (... a highly relevant part of the tables)

#### Dosages

EUCAST Clinical Breakpoint Tables v. 10.0, valid from 2020-01-01

EUCAST breakpoints are based on the following dosages (see section 8 in Rationale Documents). Alternative dosing regimens which result in equivalent exposure are acceptable. The table should not be considered an exhaustive guidance for dosing in clinical practice, and does not replace specific local, national, or regional dosing guidelines. However, if national practices significantly differ from those listed below, EUCAST breakpoints may not be valid. Situations where less antibiotic is given as standard or high dose should be discussed locally or regionally.

Uncomplicated UTI: acute, sporadic or recurrent lower urinary tract infections (uncomplicated cystitis) in patients with no known relevant anatomical or functional abnormalities within the urinary tract or comorbidities.

| Penicillins                      | Standard dose                                   | High dose                                      | Uncomplicated UTI            | Special situations                                                                      |
|----------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------|
| Benzylpenicillin                 | 0.6 g (1 MU) x 4 iv                             | 1.2 g (2 MU) x 4-6 iv                          | •                            | Meningitis caused by S. pneumoniae :                                                    |
|                                  |                                                 |                                                |                              | For a dose of 2.4 g (4 MU) x 6 iv, isolates with MIC≤0.06 mg/L are susceptible.         |
|                                  |                                                 |                                                |                              |                                                                                         |
|                                  |                                                 |                                                |                              | Pneumonia caused by S. pneumoniae: breakpoints are related to dosage:                   |
|                                  |                                                 |                                                |                              | For a dose of 1.2 g (2 MU) x 4 iv, isolates with MIC ≤0.5 mg/L are susceptible.         |
|                                  |                                                 |                                                |                              | For a dose of 2.4 (4 MU) g x 4 iv or 1.2 g (2 MU) x 6 iv, isolates with MIC ≤1 mg/L are |
|                                  |                                                 |                                                |                              | susceptible.                                                                            |
|                                  |                                                 |                                                |                              | For a dose of 2.4 g (4 MU) × 6 iv, isolates with MIC ≤2 mg/L are susceptible.           |
| Ampicillin                       | 2 g x 3 iv                                      | 2 g x 4 iv                                     |                              | Meningitis: 2 g × 6 iv                                                                  |
| Ampicillin-sulbactam             | (2 g ampicillin + 1 g sulbactam) x 3 iv         | (2 g ampicillin + 1 g sulbactam) x 4 iv        |                              |                                                                                         |
| Amoxicillin iv                   | 1 g x 3-4 iv                                    | 2 g x 6 iv                                     |                              | Meningitis: 2 g x 6 iv                                                                  |
|                                  |                                                 |                                                |                              |                                                                                         |
| Amoxicillin oral                 | 0.5 g x 3 oral                                  | 0.75-1 g x 3 oral                              | 0.5 g x 3 oral               | H. influenzae: High dose only                                                           |
| Amoxicillin-clavulanic acid iv   |                                                 |                                                |                              |                                                                                         |
|                                  | x 3-4 iv                                        | x 3 iv                                         |                              |                                                                                         |
| Amoxicillin-clavulanic acid oral | (0.5 g amoxicillin + 0.125 g                    | (0.875 g amoxicillin + 0.125 g clavulanic      | (0.5 g amoxicillin + 0.125 g | Amoxicillin-clavulanic acid has separate breakpoints for systemic infections and        |
|                                  | clavulanic acid) x 3 oral                       | acid) x 3 oral                                 | clavulanic acid) x 3 oral    | uncomplicated UTI. When amoxicillin-clavulanic acid is reported for uncomplicated       |
|                                  |                                                 |                                                |                              | UTI, the report must make clear that the susceptibility category is only valid for      |
|                                  |                                                 |                                                |                              | uncomplicated UTI.<br>H. influenzae: High dose only                                     |
| Discossillin                     | 4 g x 3 iv                                      | 4 g x 4 iv                                     |                              |                                                                                         |
| Piperacillin                     | (4 g piperacillin + 0.5 g tazobactam)           | (4 g piperacillin + 0.5 g tazobactam)          |                              | Pseudomonas-spp.: High dose only                                                        |
| Piperacillin-tazobactam          | (4 g piperaciliin + 0.5 g tazobactam)<br>x 3 iv | (4 g piperacian + 0.5 g tazobactari)<br>x 4 iv |                              | Pseudomonas-spp.: High dose only                                                        |
| Ticarcillin                      | 3 g x 4 iv                                      | 3 g x 6 iv                                     |                              | Pseudomonas spp.: High dose only                                                        |
| Ticarcillin-clavulanic acid      | (3 g ticarcillin + 0.1-0.2 g clavulanic         | (3 g ticarcillin + 0.1 g clavulanic acid) x    |                              | Pseudomonas spp.: High dose only                                                        |
|                                  | acid) x 4 iv                                    | 6 iv                                           |                              | raeudonionaa spp riigii dose oliiy                                                      |
|                                  | ,                                               |                                                |                              |                                                                                         |
| Phenoxymethylpenicillin          | 0.5-2 g x 3-4 oral                              | None                                           |                              |                                                                                         |
|                                  | depending on species and/or infection           |                                                |                              |                                                                                         |
|                                  | type                                            |                                                |                              |                                                                                         |
|                                  |                                                 |                                                |                              |                                                                                         |
| Oxacillin                        | 1g×4iv                                          | 1 g x 6 iv                                     |                              |                                                                                         |
| Cloxacillin                      | 0.5 g x 4 oral or 1 g x 4 iv                    | 1 g x 4 oral or 2 g x 6 iv                     |                              |                                                                                         |
| Dicloxacillin                    | 0.5-1 g x 4 oral or 1 g x 4 iv                  | 2 g x 4 oral or 2 g x 6 iv                     |                              |                                                                                         |
|                                  |                                                 |                                                |                              |                                                                                         |
| Flucloxacillin                   | 1 g x 3 oral or 2 g x 4 iv                      | 1 g x 4 oral or 2 g x 6 iv                     |                              |                                                                                         |
|                                  | 1 g x 3 oral or 2 g x 4 iv<br>(or 1 g x 6 iv)   | 1 g x 4 oral or 2 g x 6 lv                     |                              |                                                                                         |



Breakpoints are based in the **approved doses by EMA** and included in the Summary of Product Characteristics (SmPC)

| CLSI                                | EUCAST                                |  |
|-------------------------------------|---------------------------------------|--|
| Susceptible (S)                     | Susceptible (S)                       |  |
| Susceptible-dose-dependent (SDD)    | Susceptible, increased exposure (I)   |  |
| Intermediate (I)                    |                                       |  |
| Resistant (R)                       | Resistant (R)                         |  |
| Non-susceptible (NS)                |                                       |  |
|                                     | Area of Technical Uncertainty (ATU)   |  |
| Epidemiological cut off value (ECV) | Epidemiological cut off value (ECOFF) |  |

| <b>LDI</b> |
|------------|
|------------|

**S** - **Susceptible** a category defined by a breakpoint that implies that isolates with an MIC at or below the susceptible breakpoint are **inhibited by the usually achievable concentrations of antimicrobial** agent when the dosage recommended to treat the site of infection is used, resulting in likely **clinical efficacy.** 

#### **EUCAST**

S - Susceptible, standard dosing regimen:
A microorganism is categorised as
Susceptible, standard dosing regimen,
when there is a high likelihood of
therapeutic success using a standard
dosing regimen of the agent.

CLSI. 2020. Performance standards for antimicrobial susceptibility testing, 30<sup>th</sup> ed. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020. http://www.eucast.org.



#### CLSI

R – Resistant: A category defined by a breakpoint that implies that isolates with an MIC at or above the resistant breakpoint are not inhibited by the usually achievable concentrations of the agent with normal dosage schedules and/or that demonstrate MICs that fall in the range in which specific microbial resistance mechanisms are likely, and clinical efficacy of the agent against the isolate has not been reliably shown in treatment studies.

#### **EUCAST**

**R – Resistant:** A microorganism is categorised as *Resistant* when there is **a high likelihood of therapeutic failure even when there is increased exposure**\*.

\*Exposure is a function of how the mode of administration, dose, dosing interval, infusion time, as well as distribution and excretion of the antimicrobial agent will influence the infecting organism at the site of infection.

CLSI. 2020. Performance standards for antimicrobial susceptibility testing, 30<sup>th</sup> ed. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020. http://www.eucast.org.



| CLSI                                | EUCAST                                |
|-------------------------------------|---------------------------------------|
| Susceptible (S)                     | Susceptible (S)                       |
| Susceptible-dose-dependent (SDD)    | Susceptible, increased exposure (I)   |
| Intermediate (I)                    |                                       |
| Resistant (R)                       | Resistant (R)                         |
| Non-susceptible (NS)                |                                       |
|                                     | Area of Technical Uncertainty (ATU)   |
| Epidemiological cut off value (ECV) | Epidemiological cut off value (ECOFF) |

#### CLSI

Intermediate (I) – a category defined by a breakpoint that includes isolates with MICs within the intermediate range that approach usually attainable blood and tissue levels and/or for which response rates may be lower than for susceptible isolates

This category implies clinical efficacy in body sites where the **drugs are physiologically concentrated (I^)** or when **a higher than normal dosage of a drug can be used.** 

It also includes a **buffer zone**, which should prevent **small, uncontrolled, technical factors** from causing major discrepancies in interpretations, especially for drugs with narrow pharmacotoxicity margins.

CLSI. 2020. Performance standards for antimicrobial susceptibility testing, 29<sup>th</sup> ed. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA

#### **EUCAST**

I - Susceptible, increased exposure: A microorganism is categorised as *Susceptible, increased exposure*\* when there is a high likelihood of therapeutic success because exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection.

\*Exposure is a function of how the mode of administration, dose, dosing interval, infusion time, as well as distribution and excretion of the antimicrobial agent will influence the infecting organism at the site of infection.

> EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eucast.org.

## S/I/R – Old definitions (before 2018)



## S/I/R – New definitions (from 2019)



neuenning 3, I anu n 2013 - www.eucast.uig

## S/I/R – New definitions (from 2019)

#### Implications for the laboratory

- maintenance of **S / I / R** letters in the laboratory report but with a more restricted meaning of the "I" not including MIC testing variability
- avoid the use of "intermediate" and to substitute for "I" = susceptible, increased exposure
- alert to the clinicians of the "new criteria" in the susceptibility testing report

#### Suggests wordings (one longer, one shorter) to be included in laboratory reports:

A microorganism is categorised as *Susceptible, increased exposure* ("I") when there is a high likelihood of therapeutic success because exposure to the agent can be increased at the site of infection by adjusting the dosing regimen, mode of administration or because the concentration is naturally high at the site of infection (see <u>http://www.eucast.org/clinical\_breakpoints/</u>)

An isolate may be categorized as *Susceptible, increased exposure* ("I") to the agent provided higher exposure of the microorganism can be achieved (dose, frequency, mode of administration)

- re-education on the process of **interpretive reading** (when only using interpretive categories)

## S/I/R – New definitions (from 2019)

#### Implication for surveillance / cumulative reports in antimicrobial stewardship

- include separately **S / I / R** percentages
  - describe isolates as susceptible (S + I) or resistant (R).
  - when an isolate is described as susceptible (S + I), this excludes resistant (R)
  - when an isolate is described as resistant (R), this excludes susceptible (S + I)
- combine **[S + I]** and not [I + R] as these reports are intended for the use of the antimicrobials and not for the detection of the resistance mechanisms

#### Implication for the treatment

- only antibiotics with different does have "I" category = antibiotics with a single dose do not have "I" category
- to consider an antibiotic as a therapeutic option when categorized "I" but using the high dose when different doses are available

## S / I / R - Old definitions (2002 - 2018)

#### Pseudomonas aeruginosa breakpoints v8.1

| Betalactam agent                                                                                                                  | MIC breakpoints<br>(mg/L) |                 |  |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|--|
| -                                                                                                                                 | S≤                        | R >             |  |
| Piperacillin*                                                                                                                     | 16                        | 16              |  |
| Piperacillin-tazobactam*                                                                                                          | 16 <sup>1</sup>           | 16 <sup>1</sup> |  |
| Ticarcillin*                                                                                                                      | 16                        | 16              |  |
| Ticarcillin-clavulanic acid*                                                                                                      | 16 <sup>2</sup>           | 16 <sup>2</sup> |  |
| Cefepime*                                                                                                                         | 8                         | 8               |  |
| Ceftazidime*                                                                                                                      | 8                         | 8               |  |
| Ceftazidime-avibactam                                                                                                             | 8 <sup>1</sup>            | 8 <sup>1</sup>  |  |
| Ceftobiprole                                                                                                                      | IE                        | IE              |  |
| Ceftolozane-tazobactam                                                                                                            | 4 <sup>1</sup>            | 4 <sup>1</sup>  |  |
| Imipenem*                                                                                                                         | 4                         | 4               |  |
| Meropenem                                                                                                                         | 2                         | 8               |  |
| Meropenem-vaborbactam                                                                                                             | 8 <sup>3</sup>            | 8 <sup>3</sup>  |  |
| Aztreonam                                                                                                                         | 1                         | 16              |  |
| For susceptibility testing purposes<br>inhibitor is fixed at <sup>1</sup> 4 mg/L, <sup>2</sup> 2 mg/<br>IE: insufficient evidence |                           | on of the       |  |

## \*Breakpoints are based on high dose therapy

## S/I/R – New definitions (2019)

#### Pseudomonas aeruginosa breakpoints v9.0

| Betalactam agent                                                                                   |                 | akpoints<br>g/L) |
|----------------------------------------------------------------------------------------------------|-----------------|------------------|
|                                                                                                    | S≤              | R >              |
| Piperacillin <sup>н∈</sup>                                                                         | 16              | 16               |
| Piperacillin-tazobactam <sup>HE</sup>                                                              | 16 <sup>1</sup> | 16 <sup>1</sup>  |
| Ticarcillin <sup>HE</sup>                                                                          | 16              | 16               |
| Ticarcillin-clavulanic acid <sup>HE</sup>                                                          | 16 <sup>2</sup> | 16 <sup>2</sup>  |
| Cefepime <sup>н∈</sup>                                                                             | 8               | 8                |
| Ceftazidime <sup>HE</sup>                                                                          | 8               | 8                |
| Ceftazidime-avibactam                                                                              | 8 <sup>1</sup>  | 8 <sup>1</sup>   |
| Ceftobiprole                                                                                       | IE              | IE               |
| Ceftolozane-tazobactam                                                                             | 4 <sup>1</sup>  | 4 <sup>1</sup>   |
| Imipenem <sup>HE</sup>                                                                             | 4               | 4                |
| Meropenem                                                                                          | 2               | 8+               |
| Meropenem-vaborbactam                                                                              | 8 <sup>3</sup>  | 8 <sup>3</sup>   |
| Aztreonam <sup>HE</sup>                                                                            | 16              | 16               |
| For susceptibility testing purpose<br>inhibitor is fixed at <sup>1</sup> 4 mg/L, <sup>2</sup> 2 mg |                 | ion of the       |

IE: insufficient evidence

HE = high exposure

(= high dose, ...)

Those with **only one** (maximum possible) dose are categorized as S / R with no I category

Those with **two doses, standard and high,** are categorized as **S/I/R** 

## S/I/R – New definitions (from 2020)

Breakpoints that categorise WT organisms (organisms without phenotypically detectable acquired resistance mechanisms to the agent) as "Susceptible, increased exposure" (I) instead of "Susceptible, standard dosing regimen (S)"

Previously listed as **agent<sup>HE</sup>** to emphasize the need for high exposure (HE)

Categorization as I / R

| Betalactam agent            | MIC breakpoints<br>(mg/L) |                 |  |  |  |
|-----------------------------|---------------------------|-----------------|--|--|--|
| -                           | S≤                        | R >             |  |  |  |
| Piperacillin                | 0.001                     | 16              |  |  |  |
| Piperacillin-tazobactam     | 0.001 <sup>1</sup>        | 16 <sup>1</sup> |  |  |  |
| Ticarcillin                 | 0.001                     | 16              |  |  |  |
| Ticarcillin-clavulanic acid | 0.001 <sup>2</sup>        | 16 <sup>2</sup> |  |  |  |
| Cefepime                    | 0.001                     | 8               |  |  |  |
| Ceftazidime                 | 0.001                     | 8               |  |  |  |
| Ceftazidime-avibactam       | 8 <sup>1</sup>            | 8 <sup>1</sup>  |  |  |  |
| Ceftobiprole                | IE                        | IE              |  |  |  |
| Ceftolozane-tazobactam      | 4 <sup>1</sup>            | 4 <sup>1</sup>  |  |  |  |
| Imipenem                    | 0.001                     | 4               |  |  |  |
| Meropenem                   | 2                         | 8 🔶             |  |  |  |
| Meropenem-vaborbactam       | 8 <sup>3</sup>            | 8 <sup>3</sup>  |  |  |  |
| Aztreonam                   | 0.001                     | 16              |  |  |  |

Pseudomonas aeruginosa breakpoints v10.0

IE: insufficient evidence

Arbitrary valued to assure that all susceptible population is categorized as "I"

> Those with only one (maximum) possible dose are categorized as S / R with no I category

Those with **two doses, standard and high,** are categorized as **S/I/R** 

## S/I/R – New definitions

Ceftazidime / Pseudomonas aeruginosa International MIC Distribution - Reference Database 2019-11-13

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance



Epidemiological cut-off (ECOFF): 8 mg/L Wildtype (WT) organisms: ≤ 8 mg/L

32276 observations (84 data sources)

## **Reporting with new "I" definition**

#### **Pseudomonas aeruginosa** – new breakpoints and interpretive reading

| Betalactam agent                                                     |                    | eakpoints<br>ig/L) | Wild type      | AmpC<br>derepressed                                | Porin<br>deficiency<br>(OprD⁻) | Efflux pump<br>(MexAB-OprM) | Metallo-β<br>-lactamase<br>(VIM-2) | Carbapene-<br>mase<br>(GES-5) |
|----------------------------------------------------------------------|--------------------|--------------------|----------------|----------------------------------------------------|--------------------------------|-----------------------------|------------------------------------|-------------------------------|
|                                                                      | S≤                 | R>                 | MIC (category) | MIC (category)                                     | MIC (category)                 | MIC (category)              | MIC (category)                     | MIC (category)                |
| Piperacillin-tazobactam                                              | 0.001 <sup>1</sup> | 16 <sup>1</sup>    | 4 (I)          | >64 (R)                                            | 8 (I)                          | >64 (R)                     | >64 (R)                            | >64 (R)                       |
| Ceftazidime                                                          | 0.001              | 8                  | 1 (I)          | >32 (R)                                            | 2 (I)                          | 2 (I)                       | >32 (R)                            | >32 (R)                       |
| Cefepime                                                             | 0.001              | 8                  | 2 (I)          | >16 (R)                                            | 4 (I)                          | 4 (I)                       | >16 (R)                            | >16 (R)                       |
| Aztreonam                                                            | 0.001              | 16                 | 4 (I)          | >16 (R)                                            | 8 (I)                          | 8 (I)                       | 4 (I)                              | >16 (R)                       |
| Ceftazidime-avibactam                                                | 8 <sup>1</sup>     | 8 <sup>1</sup>     | 1 (S)          | 1 (S)                                              | 2 (S)                          | 2 (S)                       | >32 (R)                            | 4 (S)                         |
| Ceftolozane-tazobactam                                               | 4 <sup>1</sup>     | 4 <sup>1</sup>     | 0.5 (S)        | 0.5 (S)                                            | 0.5 (S)                        | 0.5 (S)                     | >16 (R)                            | >16 (R)                       |
| Imipenem                                                             | 0.001              | 4                  | 0.5 <b>(I)</b> | 1 <b>(I)</b>                                       | >8 (R)                         | 1 (I)                       | >8 (R)                             | >8 (R)                        |
| Meropenem                                                            | 2                  | 8                  | 0.5 (S)        | 0.5 (S)                                            | 2 (S)                          | 8 (R)                       | >8 (R)                             | >8 (R)                        |
| For susceptibility testing purpo<br>concentration of the inhibitor i |                    | 4 mg/L             |                | <i>creased exposure</i> to<br>mode of administrati | •                              | higher exposure of t        | he microorganism car               | h be achieved                 |

## New S/I/R definitions: next stepts

### To adapt cumulative reports to the new definitions



#### PORCENTAJE DE AISLADOS SENSIBLES\* (2019)

\*Criterios EUCAST (www.eucast.org)

|                                           |     |     |     |     |        |         |                     | GR  | AMNEG | ATIVO |
|-------------------------------------------|-----|-----|-----|-----|--------|---------|---------------------|-----|-------|-------|
|                                           |     |     |     |     | Betala | actámio | os                  |     |       |       |
| Enterobacterias                           | AMP | AMC | PTZ | СТХ | CAZ    | FEP     | ATM                 | IMP | ERT   | MER   |
| Escherichia coli                          | 38  | 89  | 95  | 95  | 94     | 90      | 93                  | 99  | 99    |       |
| Klebsiella pneumoniae                     |     | 84  | 87  | 88  | 88     | 84      | 79                  | 94  | 93    |       |
| Klebsiella oxytoca                        |     | 89  | 93  | 95  | 95     | 92      | 89                  | 99  | 99    |       |
| Klebsiella aerogenes                      |     | -   | 81  | 79  | 76     | 91      | 70                  | 98  | 95    |       |
| Serratia marcescens                       |     |     | 81  | 60  | 63     | 84      | 67                  | 96  | 98    |       |
| Enterobacter cloacae                      |     |     | 82  | 71  | 70     | 84      | 79                  | 98  | 92    |       |
| Morganella morganii                       |     |     | 97  | 70  | 65     | 98      | 82                  | 60  | 99    |       |
| Proteus mirablis                          | 50  | 92  | 93  | 100 | 100    | 100     |                     | 97  | 100   |       |
| Salmonella spp.                           | 52  | 91  |     |     |        |         |                     |     |       |       |
| Bacilos gramnegativos no<br>fermentadores |     |     |     |     |        |         |                     |     |       |       |
| Pseudomonas aeruginosa                    |     |     | 81  |     | 83     | 79      | 84                  | 76  |       | , 84  |
| Acinetobacter baumannii                   |     |     | 94  |     | 91     | 91      |                     | 91  | /     | 94    |
| Stenotrophomonas maltophilia              |     |     |     |     | 56     |         |                     |     |       |       |
| ¥<br>[]]                                  |     |     |     |     |        |         | [ <b>S</b><br>78.99 | +   | 11    |       |

## New S/I/R definitions: next stepts

### To implement a new letter for the "I" category ...?

- HE (High Exposure) S / HE / R
- I<sup>HE</sup> (Susceptible with <u>H</u>igh <u>E</u>xposure) S / I<sup>HE</sup> / R
- SI (Susceptible Increased exposure)
   S / SI / R
- To perform educational efforts in order to translate the new definitions into clinics and stewardship programs

#### **Colistin interpretive criteria: 2020 breakpoints**

|                    | Minimum inhibitory concentration (mg/L) |    |    |  |    |    |       |     |  |
|--------------------|-----------------------------------------|----|----|--|----|----|-------|-----|--|
| Microorganisms     | CLSI                                    |    |    |  |    | EU | CAST* |     |  |
|                    | S                                       | I  | R  |  | S  | I  | R     | ATU |  |
| Enterobacterales   | -                                       | ≤2 | ≥4 |  | ≤2 | -  | >2    | -   |  |
| Pseudomonas spp.   | -                                       | ≤2 | ≥4 |  | ≤2 | -  | >2    | 4   |  |
| Acinetobacter spp. | -                                       | ≤2 | ≥4 |  | ≤2 | -  | >2    | -   |  |

#### **CLSI: Clinical and Laboratory Standard Institute**

S: susceptible; I: intermediate; R: Resistant

#### **EUCAST: European Committee of Antimicrobial Susceptibility Testing**

**S:** susceptible, standard dose; **I:** susceptible, increased exposure; **R:** Resistant; **ATU:** Area of Technical Uncertainity

\*Colistin MIC determination should be performed with broth microdilution. Quality control must be performed with both a susceptible QC strain (*E. coli* ATCC 25922 or *P. aeruginosa* ATCC 27853) and the colistin resistant *E. coli* NCTC 13846 (*mcr-1* positive).

### CLSI – Susceptible dose dependent category (SDD)

#### SDD

A category defined by a breakpoint that implies that susceptibility of an isolate is dependent on the dosing regimen that is used in the patient.

...it is necessary to **use a dosing regimen** (ie, higher doses, more frequent doses, or both) that results in **higher drug exposure** than the dose that was used to establish the susceptible breakpoint.

Consideration should be given to the maximum approved dosage regimen, because higher exposure gives the highest probability of adequate coverage of an SDD isolate.

This category also includes a **buffer zone for inherent variability in test methods**, which should prevent small, uncontrolled, technical factors from causing major discrepancies in interpretations, especially for drugs with narrow pharmacotoxicity margins.

> CLSI. 2020. Performance standards for antimicrobial susceptibility testing, 30<sup>th</sup> ed. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA

## CLSI – Susceptible dose dependent category (SDD)

- Susceptibility is dependent on the dosing regimen and it only applies when multiple doses are used
- Initially only proposed for CEFEPIME and Enterobacterales based on different dosing schemes (and site of infection)

| Site/Infection Type      | Dose   | Frequency | Total Daily Dose |
|--------------------------|--------|-----------|------------------|
| Mild to moderate UTI     | 0.5-1g | 12h       | 1-2g             |
| Severe UTI               | 2g     | 12h       | 4g               |
| Mild to severe pneumonia | 1-2g   | 12        | 2-4g             |
| Moderate to sever SSTI   | 2g     | 12h       | 4g               |
| Complicated IAI          | 2g     | 12h       | 4g               |
| Neutropenic fever        | 2g     | 8h        | 6g               |

The non-UTI doses for cefepime range from 2 to 6 g/day

 Currently expanded to CEFTAROLINE and S. aureus DAPTOMYCIN and Enterococcus spp.

CLSI. 2020. Performance standards for antimicrobial susceptibility testing, 30th ed. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA





Point-Counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for **Reporting Antimicrobial Susceptibility Results** 

Gunnar Kahlmeter,<sup>a,b</sup> Christian G. Giske,<sup>a,c</sup> Thomas J. Kirn,<sup>d</sup> Susan E. Sharp<sup>e</sup>

| CLSI     |                                      | EUCAST                                                      |   |
|----------|--------------------------------------|-------------------------------------------------------------|---|
| S<br>I   | susceptible<br>intermediate          | Ssusceptible, standard doseIsusceptible, increased exposure | 2 |
| SDD<br>R | susceptible dose dependent resistant | R resistant                                                 |   |
| NS       | non susceptible                      | ATU: area of technical uncertainty                          |   |

| Interpretive category                            |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|--------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (abbreviation)                                   | Status                                              | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Intermediate (I)                                 | EUCAST previous definition<br>(in common with CLSI) | A microorganism is defined as intermediate by a level of antimicrobial agent activity<br>associated with uncertain therapeutic effect. It implies that an infection due to<br>the isolate may be appropriately treated in body sites where the drugs are<br>physically concentrated or when a high dosage of the drug can be used; it also<br>indicates a buffer zone that should prevent small, uncontrolled, technical factors<br>from causing major discrepancies in interpretations. |  |  |  |
| Susceptible, increased exposure <sup>a</sup> (I) | EUCAST new definition<br>(not shared with CLSI)     | A microorganism is categorized as "susceptible, increased exposure" when there is a<br>high likelihood of therapeutic success because exposure to the agent is increased<br>by adjusting the dosing regimen or by its concentration at the site of infection.                                                                                                                                                                                                                            |  |  |  |

<sup>a</sup>Exposure is a function of how the mode of administration, dose, dosing interval, and infusion time as well as the distribution and excretion of the antimicrobial agent will influence the infecting organism at the site of infection.

### Interpretive reading of the antibiogram



#### Implementation of EUCAST breakpoints/guidelines, February 2020

**EUCAST** EUCAST EUROPEAN COMMITTEE ON ANTIMICROBIAL SUSCEPTIBILITY TESTING

European Society of Clinical Microbiology and Infectious Diseases



https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST\_files/EUCAST\_Presentations/2020/EUCAST\_update\_Gen\_Comm\_all\_presentations.pdf



# Lectura interpretada e interpretación del antibiograma

izer

6 de julio de 2020

