Tercera Reunión Anual del grupo: CEDECE CONTRACTOR CON

Dose Banding Estrategias de implantación Experiencia europea

Richard Nuttall The Royal Marsden, Londres

Overview

- History of dose banding in the UK and the principles it produced
- How we implemented dose banding
- Problems and resolutions
- Evidence in clinical practice

History in the UK

No standardisation across the UK

- Scotland and Wales each had own models
- England had multiple models

2011 Burhan Zavery introduced logarithmic dose banding with 5% variance limits

- Easy 20% dose reduction one of the few benefits
- Other dose reductions difficult (e.g. 33%)
- Doses difficult to measure (e.g. 723.5mg)
- Poor uptake

Variance Limits and Terms

100mg dose band ranges from 92-105mg "calculated doses" (or step points) Using the example in the yellow box...

100mg is 4.8% less than the 105mg calculated dose the patient *would* have otherwise received This is the UPPER VARIANCE for *this* band Actual variances don't usually reach the max upper and lower red lines due to rounding.

A new standard

Working group in Manchester (Jan 2016) with pharmacists from:

- 2 cancer hopsitals (Marsden & Christie),
- 1 district general hospital (Durham & Darlington),
- 1 large teaching hospital (Sheffield)
- Also immunotherapy pharmacokinetics with Kayode from Christie
- Three types of dose banding were created using either 6% or 10% variance:
 - Attenuated logarithmic (basic standard for low cost drugs)
 - High cost drugs (rounded to nearest vial sizes or fractions)
 - Multiple syringe method ('pick and mix') for syringe pumps
- Note it is the doses that are banded

how you get to the doses *does not matter* (i.e. mg/m², mg/kg, or AUC)

Principles

- Cytotoxics & conjugates max 6% variance (from log values)
- Dose reductions of $\sim 20\%$ by dropping 2 or more bands 2.
- Doses measurable in one syringe (max 85% capacity of syringe) 3.
- 4. All drugs of the same conc. have same doses (unless expensive), multiple tables needed if multiple strengths available (e.g. gemcitabine)
- 5. Reduced number of bands (inventory) where possible
- Multiple container doses never >1 more than the absolute minimum possible 6.
- High cost drugs rounded to neared vial sizes or fractions (half, third, quarter) 7.

ATENCIÓN FARMACÉUTICA

AL PACIENTE ONCOHEMATOLÓGICO

- Break points using the square root of the two bands being evaluated 8.
- 9. Max dose also banded

Volume Based Tables

Implementation... Implantación...

Stakeholder Discussions

Discussions were had with the following:

NHS Clinical Reference Groups (CRGs) – clinicians, experts, commissioners, patients who advise the NHS how services should be provided.

- Medicines Optimisation CRG Dose standardisation group created here!
- Cancer CRG

Other groups: BOPA (oncology pharmacists), UKONS (nurses), PASG (aseptic

group), Royal College of Physicians

Manufacturing: Don't forget the drug companies!

Hold forums and meetings to address concerns, and technical issues

Seeffh Soedad Spanka de Tamaca Hospitalana **feefh** Fundada Españala

CQUINS & Training

Dose Standardisation Group then organised the following:

- CQUIN Commissioning for Quality and Innovation a proportion of hospital income dependant on demonstrating improvements in CQUIN Targets – a Dose Banding CQUIN was created – now into year 3: 90% of chemo doses must match the standard NHS bands to receive payment (based on drug cost)
- National training days talks from various experts in dose banding, manufacturing, clinical evidence and trials – attended by...
 - Pharmacists
 - Clinicians
 - Manufacturers
 - Commissioners

Maintenance (New Drugs)

The Dose Standardisation Group met with members of the National Institute for Clinical Excellence (NICE)

- New drug reviews and approvals for treatment in the NHS
- Banding tables produced as part of the review process
- Published on the NHS England website
- https://www.england.nhs.uk/commissioning/spec-services/npc-crg/group-b/b02/

Manufacturing Issues

It's not just the doses that need to be standardised – PRODUCT PRESENTATIONS NEED TO BE FIXED AS WELL

Aspects to consider:

- Infusion fluid type (e.g. glucose, saline) and volume
- Variable volume drugs (e.g. etoposide, oxaliplatin, paclitaxel) where limits often vary from hospital to hospital

Oxaliplatin	0mg – 100mg	250mL		
•	100.01mg and above	500mL		
	0mg - 79.9999mg	100mL		
Paclitaxel	80mg - 299.9999mg	250mL		
	300mg – 600mg	500mL		

- Storage conditions (protect from light, refrigerate)
- Expiry (best before, use by, do not use after)

If we are all using EXACTLY the same product we can purchase together

Other problems & solutions

Gemcitabine – licenced dose bands became available, BUT the volumes varied by dose – uptake could have been better (manufacturing based on diluted stock solution of 10mg/mL)

Gemcitabine – available as 38mg/mL and 100mg/mL vials. Needs 2 separate banding tables.

No easy answer if you use both strengths in one hospital unit. Methotrexate and cytarabine also pose similar problems.

5-FU - available in 2 strengths 25mg/mL and 50mg/mL – base the dose banding table on 50mg/mL and double the volume to get 25mg/mL doses (doubling a volume will usually still give you a measurable figure – but halving a volume may not)

What to do with mesna

Cyclo and ifos have different concentrations and different bands Overlay both on the *same* graph and rest the mesna bands on top Variance limits breached because of this – but mesna is not toxic

Tercera Reunión Anual del grupo:

Evidence

Is dose banding having any clinical effect on cancer treatment?

More and more papers are being published in support of dose banding...

- Standard chemotherapy
- Monoclonal antibodies
- Paediatrics (children appear to have no ill effects, but infants require more data)

Standard Chemotherapy

The Clinical Impact of Dose-Banding (GJ Sewell, 2006)

Dose banding 5-FU made no difference to the AUC exposure to patients

Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents (E Chatelut, 2012)

- 6 drugs tested: Cisplatin, docetaxel, paclitaxel, doxorubicin, irinotecan, topotecan
 - no significant difference in AUC / plasma exposure

In general – inter-patient variation in the handling of drugs provided more AUC variance than anything that dose banding would do

Monoclonal Antibodies/Biologics

Fixed Dosing of Monoclonal Antibodies in Oncology (JJMA Hendrikx, 2017)

- Wide therapeutic window / flat dose-response relationship
- No reduced clinical efficacy after fixed dosing
- Most mabs can be 'rounded' to 1 or 2 'bands'

We use 10% variance for mabs

(this is larger than for standard chemotherapy – but still very conserative)

10% *does not* apply to conjugates where there is a standard chemotherapy agent attached to a biological carrirer – keep to 6% variance here

Monoclonal Antibodies/Biologics

Table 1. Monoclonal antibodies approved for treatment of cancer and a proposal for fixed dosing

Generic name	Approved dose	Therapeutic window ^a	Volume of distribution at steady state (L)	Body weight effect on volume of distribution ^b	Clearance (L/day)	Body weight effect on clearance ^b		Corresponding body size based dose after fixed dosing	References
							c		
Bevacizumab	5 mg/kg; 2 weekly 10 mg/kg; 2 weekly 15 mg/kg; 3 weekly	5–15 mg/kg	2.66	0.411	0.207	0.368	40-140 kg: 600 mg, 2 weekly	4.2–15 mg/kg	[33, 36, 37]
Catumaxomab	Day 0: 10 ug Day 3: 20 ug Day 7: 50 ug Day 10: 150 ug	Intraperitoneal administration with limited absorption into the systemic circulation.					Approved fixed dose		[19, 20]
Cetuximab	250 mg/m ² weekly (400 mg/m ² loading dose)	250-400 mg/m ²	5.22	0.42 (effect of BSA was evaluated)	0.497	None	1.3-2.2 m ² : 500 mg, weekly (with 800 mg loading dose)	227–384 mg/m ² (364–615 mg/m ² loading dose)	[34, 35, 38]
Ipilimumab	3 mg/kg; 3 weekly	3–10 mg/kg	4.15	0.708	0.360	0.642	40–60 kg: 150 mg, 3 weekly 60–100 kg: 250 mg, 3 weekly 100–140 kg: 350 mg, 3 weekly	2.5-3.8 mg/kg 2.5-4.2 mg/kg 2.5-3.5 mg/kg	[57–59]
Nivolumab	3 mg/kg; 2 weekly	1-10 mg/kg	8.0	0.580	0.228	0.707	40-140 kg: 240 mg, 2 weekly	1.7-6 mg/kg	[44, 60]
Obinutuzumab	1,000 mg per cycle (cycle 2-6)	1,000-2,000 mg	2.76	0.383	0.083	0.231	Approved fixed dose		[61-63]
Ofatumumab	1,000 mg; 4 weekly (untreated CLL) 2,000 mg; weekly (refractory CLL)	1,000-2,000 mg	3.26	0.076	0.369	0.229	Approved fixed dose		[64-66]
Panitumumab	6 mg/kg; 2 weekly	2.5–9 mg/kg	3.66	0.526	0.269	0.411	40–80 kg: 300 mg, 2 weekly 80–140 kg: 500 mg, 2 weekly	3.75–7.5 mg/kg 3.5–6.25mg/kg	[67–69]
Pembrolizumab	2 mg/kg; 3 weekly	1–10 mg/kg	8.1	0.489	0.23	0.595	40-140 kg: 150 mg, 3 weekly	1.1-3.8 mg/kg	[49, 70, 71]
Pertuzumab	420 mg; 3 weekly (840 mg loading dose)	420-1,050 mg	3.07	0.747	0.239	0.516-0.589	Approved fixed dose		[72-75]
Ramucirumab	8 mg/kg; 2 weekly	8-10 mg/kg	5.5	Not reported	0.336	Not reported	Insufficient data		[56, 76]
Rituximab	375 mg/m ² ; interval is variable	375-2,250 mg	2.98	0.73	0.257	1.02	1.3–2.2 m ² : 800 mg per administration	364-615 mg/m ²	[39, 40, 77]
Trastuzumab	2 mg/kg/week (with an additional 2 mg/kg as loading dose)	1->8 mg/kg	2.95	0.556	0.225	1.07	40–140 kg: 450 mg, 3 weekly	3.2–11.3 mg/kg	[13, 41-43, 78

Fixed dose is proposed if the effect of body weight on the volume of distribution and clearance is minimal (<0.5). If the effect of body weight is strong (>0.5) or unknown and a wide therapeutic window is reported, a fixed dosing approach might be considered for practical reasons.

^aThe therapeutic window is based on a minimum effective dose at the interval of the approved dose and a maximum tolerated (or tested) dose after single administration.

^bThe effect is presented as the exponent used in population pharmacokinetics models in formula 1 to correct for the effect of body weight, whereas 0 is used for no effect and 1 is used for a linear effect.

Abbreviations: BSA, body surface area; EMA, European Medicines Agency; CLL, chronic lymphocytic leukemia.

Paediatrics

Investigating the potential impact of dose banding for systemic anti-cancer therapy in the paediatric setting based on pharmacokinetic evidence (M White-Koning et al, 2017)

- Tested dactinomycin, busulfan, carboplatin, cyclophosphamide and etoposide
- Compared calcuated dose AUC with NHS England dose bands
- No statistical difference seen

Some benefits of dose banding will not be seen in paediatrics

• Low use of most drug doses – wider spread of dose inventory

• Different volume sizes required in smaller patients – non standard volumes

Summary

- Created a system based on attenuated logarithmic banding
- Engaged with relevant professions for approval (sought evidence)
- Promoted and financially encouraged by the NHS
- Created a longer term maintenance system with NICE
- Started buying and manufacturing in batches

